Skip to main content

Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses, Volume 1

Abstract

Drought stress induces a range of metabolic responses in plants. Some of these responses are mediated by arbuscular mycorrhizae (AM), which occur almost ubiquitously in symbiotic associations. These changes are highly variable and depend on various factors related mainly to the diversity of plant and fungal species but are generally beneficial to the host plants. This chapter addresses the role of AM fungi in the amelioration and alleviation of drought stress in host plants and their positive effects on growth. We discuss the various biochemical, physiological, and molecular processes used by plants to alleviate drought stress. We provide an update of the recent progress in functional approaches for unraveling the mechanisms that promote resistance to drought stress and discuss their significance to the host plants. The positive aspects of AM are also discussed in the context of the ecosystem services provided by the symbiosis under environmental drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour H, Saeid-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected Pistachio (Pistacia vera L.) seedlings to drought stress under glasshouse conditions. J Plant Physiol 169:704ā€“709

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Alguacil MM, HernĆ”ndez JA, Caravaca F, Portillo B, RoldĆ”n A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Plant Physiol 118:562ā€“570

    CASĀ  Google ScholarĀ 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis Lag ex steud. New Phytol 91:191ā€“196

    Google ScholarĀ 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373ā€“399

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aroca R, Ruiz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganismsā€”a review. Sustain Agr Rev 2:121ā€“135

    Google ScholarĀ 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808ā€“816

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029ā€“2041

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G et al (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant Microbe Interact 22:1169ā€“1178

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aroca R, Ruiz-Lozano JM, ZamarreƱo AM, Paz JA, GarcĆ­a-Mina JM, Pozo MJ et al (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47ā€“55

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Asensio D, Rapparini F, PeƱuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149ā€“161

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305ā€“316

    CASĀ  Google ScholarĀ 

  • AugĆ© RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3ā€“42

    Google ScholarĀ 

  • AugĆ© RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136ā€“157

    Google ScholarĀ 

  • AugĆ© RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87ā€“97

    Google ScholarĀ 

  • AzcĆ³n R, Gomez M, Tobar R (1996) Physiological and nutritional responses by Lactuca sativa to nitrogen sources and mycorrhizal fungi under drought. Biol Fertil Soils 22:156ā€“161

    Google ScholarĀ 

  • Barea JM, Palenzuela J, Cornejo P, SĆ”nchez-Castro I, Navarro-FernĆ”ndez C, LopĆ©z-GarcĆ­a A et al (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292ā€“1301

    Google ScholarĀ 

  • BĆ”rzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballest MC, Carvajal M et al (2012) Arbuscular mycorhhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009ā€“1017

    PubMedĀ  Google ScholarĀ 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347ā€“359

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617ā€“624

    PubMedĀ  Google ScholarĀ 

  • Bouwmeester HJ, Roux C, Lopez-Rae A, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224ā€“230

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48ā€“54

    Google ScholarĀ 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266ā€“274

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought- from genes to the whole plant. Func Plant Biol 30:239ā€“264

    CASĀ  Google ScholarĀ 

  • Conner AC, Bill RM, Conner MT (2013) An emerging consensus on aquaporin translocation as a regulatory mechanism. Mol Membr Biol 30:1ā€“12

    PubMedĀ  Google ScholarĀ 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorous. New Phytol 88:327ā€“339

    CASĀ  Google ScholarĀ 

  • Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three succulents infected with mycorrhizal fungi. New Phytol 122:643ā€“649

    CASĀ  Google ScholarĀ 

  • Daily GC (1997) Introduction: what are ecosystem services? In: Daily GC (ed) Natureā€™s services: societal dependence on natural ecosystems. Island Press, Washington DC, pp 1ā€“10

    Google ScholarĀ 

  • De Bello F, Lavorel S, DĆ­az S, Harrington R, Cornelissen JHC, Bardgett RD et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873ā€“2893

    Google ScholarĀ 

  • Demming-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11ā€“21

    Google ScholarĀ 

  • Doidy J, Grace E, KĆ¼hn C, Simon-Plas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413ā€“422

    PubMedĀ  CASĀ  Google ScholarĀ 

  • DoubkovĆ” P, VlasĆ”kovĆ” E, SudovĆ” R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil. DOI 10.1007/s11104-013-1610-7. Online publication date: 1 Jan 2013

  • European Environmental Agency (EEA) (2011) Global and European temperature (CSI 012/CLIM 001), Assessment May 2011. Copenhagen, http://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature/global-and-european-temperature-assessment-4 Accessed on 20 Aug 2012

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87ā€“94

    Google ScholarĀ 

  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533ā€“1542

    Google ScholarĀ 

  • FernĆ”ndez-MarĆ­n B, Balaquer L, Esteban R, Becerril JM, GarcĆ­a-Plazaola JI (2009) Dark induction of the photoprotective xanthophyll cycle in response to dehydration. J Plant Physiol 166:1734ā€“1744

    PubMedĀ  Google ScholarĀ 

  • Fini A, Frangi P, Amoroso G, Piatti R, Faoro M, Bellasio C et al (2011) Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21:703ā€“719

    PubMedĀ  Google ScholarĀ 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizals under field conditions. New Phytol 99:257ā€“265

    Google ScholarĀ 

  • George E, HƤussler GE, Vetterlein D, Grogus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130ā€“2137

    Google ScholarĀ 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519ā€“530

    PubMedĀ  Google ScholarĀ 

  • Goicoechea N, Szalai G, AntolĆ­n MC, SĆ”nchez-DĆ­az M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706ā€“711

    CASĀ  Google ScholarĀ 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47ā€“57

    Google ScholarĀ 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531ā€“567

    Google ScholarĀ 

  • Hoekstra F, Golovina E, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Sci 8:431ā€“438

    Google ScholarĀ 

  • IPCC (2007) IPCC Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Working group 1 contribution to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Chapters 3 (observations: surface and atmospheric climate change), 10 (global climate projections), 11 (regional climate projections). Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23ā€“88

    CASĀ  Google ScholarĀ 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706ā€“712

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kishor PKB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424ā€“438

    CASĀ  Google ScholarĀ 

  • Koide RT (1993) Physiology of the mycorrhizal plant. Adv Plant Pathol 9:33ā€“35

    Google ScholarĀ 

  • Kwak JM, Nguyen V, Shroeder JI (2006) The role of active oxygen species in hormonal responses. Plant Physiol 141:323ā€“329

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lavorel S (2013) Plant functional effects on ecosystem services. J Ecol 101:4ā€“8

    Google ScholarĀ 

  • Lee B-R, Muneer S, Avice J-C, Jin Jung W, Kim T-H (2012) Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22:525ā€“534

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Levitt J (1980) Responses of plants to environmental stress, 2nd edn. Academic Press, USA

    Google ScholarĀ 

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2012) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617ā€“630

    PubMedĀ  Google ScholarĀ 

  • Lopez-RĆ”ez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863ā€“874

    PubMedĀ  Google ScholarĀ 

  • Ludlow MM (1989) Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. SPB Academic Publishing BV, The Haugue, pp 269ā€“281

    Google ScholarĀ 

  • Ludwig-MĆ¼ller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, New York, pp 169ā€“190

    Google ScholarĀ 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151ā€“156

    Google ScholarĀ 

  • Marulanda A, AzcĆ³n R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526ā€“533

    CASĀ  Google ScholarĀ 

  • Marulanda A, Porcel R, Barea JM, AzcĆ³n R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543ā€“552

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maurel C, Plassard C (2011) Aquaporins: for more than water at the plant-fungus interface? New Phytol 190:815ā€“817

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595ā€“624

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014ā€“2026

    CASĀ  Google ScholarĀ 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405ā€“410

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Munns R (1988) Why measure osmotic adjustment. Aust J Plant Physiol 15:717ā€“726

    Google ScholarĀ 

  • PeƱuelas J, MunnĆ©-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166ā€“169

    PubMedĀ  Google ScholarĀ 

  • PeƱuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M et al (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chan Biol 19:2303ā€“2338

    Google ScholarĀ 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorhhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743ā€“1750

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135ā€“143

    CASĀ  Google ScholarĀ 

  • Porcel R, Aroca R, AzcĆ³n R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa in relation to drought stress tolerance. Plant Mol Biol 60:389ā€“404

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Powles S (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35:15ā€“44

    CASĀ  Google ScholarĀ 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141ā€“151

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rapparini F, LlusiĆ  J, PeƱuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua. Plant Biol 10:108ā€“122

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41ā€“53

    PubMedĀ  CASĀ  Google ScholarĀ 

  • RoldĆ”n A, DĆ­Ć”z-Vivancos P, HernĆ­ndez JA, Carrasco L, Caravaca F (2008) Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. J Plant Physiol 165:715ā€“722

    PubMedĀ  Google ScholarĀ 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309ā€“317

    PubMedĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, Aroca R (2010) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (eds) Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer ScienceĀ +Ā Business Media, Dordrecht, pp 359ā€“374

    Google ScholarĀ 

  • Ruiz-Lozano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472ā€“478

    CASĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, AzcĆ³n R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosy Environ 60:175ā€“181

    CASĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, AzcĆ³n R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis 23:9ā€“21

    Google ScholarĀ 

  • Ruiz-Lozano JM, GĆ³mez M, AzcĆ³n R (1995) Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Sci 110:37ā€“44

    CASĀ  Google ScholarĀ 

  • Ruiz-Lozano J, AzcĆ³n R, Palma JM (1996) Superoxide dismutase activity in arbuscular-mycorrhizal Lactuca sativa L. plants subjected to drought stress. New Phytol 134:327ā€“333

    CASĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, Collados C, Barea JM, AzcĆ³n R (2001) Clonig of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress. J Exp Bot 52:2241ā€“2242

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693ā€“698

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ruiz-Lozano JM, del Mar Alguacil M, BĆ”rzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565ā€“579

    Google ScholarĀ 

  • Ruiz-SĆ”nchez M, Aroca R, MuƱoz Y, Armada E, PolĆ³n R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862ā€“869

    PubMedĀ  Google ScholarĀ 

  • Ruiz-SĆ”nchez M, Armada E, MuƱoz Y, de Salamone IEG, Aroca R, Ruiz-Lozano JM et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhanced rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031ā€“1037

    PubMedĀ  Google ScholarĀ 

  • Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459ā€“468

    CASĀ  Google ScholarĀ 

  • SĆ”nchez-Blanco MJ, FerrĆ”ndez T, Morales MA, Morte A, AlarcĆ³n JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675ā€“682

    PubMedĀ  Google ScholarĀ 

  • Sardans J, PeƱuelas J, Rivas-Ubach A (2011) Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191ā€“225

    CASĀ  Google ScholarĀ 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333ā€“341

    PubMedĀ  Google ScholarĀ 

  • Singh LP, Singh Gill S, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 2:175ā€“191

    Google ScholarĀ 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27ā€“58

    CASĀ  Google ScholarĀ 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google ScholarĀ 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 63:227ā€“250

    Google ScholarĀ 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347ā€“358

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizal. Plant Soil 326:3ā€“20

    CASĀ  Google ScholarĀ 

  • Smith SE, Jakobsen I, GrĆønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understating and manipulating plant phosphorus acquisition. Plant Physiol 156:1050ā€“1057

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol 129:643ā€“650

    Google ScholarĀ 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69ā€“75

    Google ScholarĀ 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245ā€“253

    Google ScholarĀ 

  • Turner NC (1997) Further progress in crop water relations. Adv Agron 58:293ā€“338

    Google ScholarĀ 

  • Uehlein N, Fileschi K, Eckert M, Bienert G, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122ā€“129

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chem Ecol 5:283ā€“291

    CASĀ  Google ScholarĀ 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663ā€“692

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417ā€“425

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55:436ā€“442

    CASĀ  Google ScholarĀ 

  • Wu QS, Xia RX, Zou YN (2006a) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101ā€“1110

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu QS, Zou YN, Xia RX (2006b) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European J Soil Biol 42:166ā€“172

    CASĀ  Google ScholarĀ 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y et al (2007) Nitrogen deficiency as well as phosphorous deficiency in sorghum promote the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125ā€“132

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285ā€“293

    Google ScholarĀ 

  • Zhang Y, Zhong CL, Chen Y, Chen Z, Jiang QB, Wu C et al (2010) Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New Forest 40:261ā€“271

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rapparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rapparini, F., PeƱuelas, J. (2014). Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9466-9_2

Download citation

Publish with us

Policies and ethics