Molecular Basis for Persistence of Botulinum Neurotoxin: The Role of Intracellular Protein Degradation Pathways

  • Yien Che Tsai
  • Brian E. Moller
  • Michael Adler
  • George A. Oyler
Part of the Current Topics in Neurotoxicity book series (Current Topics Neurotoxicity, volume 4)


A key aspect of botulinum neurotoxin biology, which underpins both the nature of botulism and the clinical success of therapeutic neurotoxin preparations, is the duration of effect of the neurotoxin on neurotransmitter release. There are seven different distinct serotypes of botulinum neurotoxins which exhibit a wide range in the duration of action or “persistence” after intoxications. The biological basis of persistence is beginning to be understood. One mechanism which underpins the duration of neurotoxin activity is survival of the light chain within the presynaptic terminal of the intoxicated neuron. For the neurotoxin light chain to remain in the presynaptic terminal maintaining the intoxication state, the bacterial protein must evade the two major pathways for cellular protein degradation, the ubiquitin–proteasome system degradation and the lysosomal/autophagy mechanism. A role for substrate cleavage products in persistence has also been suggested in perpetuating the intoxication state. These various ideas and the evidence for and against them are reviewed. The opportunity to modify the persistence of the neurotoxin and its therapeutic potential is also considered.


Bioterrorism Botulinum neurotoxin Ubiquitination Deubiquitination Persistence 



This research was supported in part by the Defense Threat Reduction Agency—Joint Science and Technology Office, Medical S & T Division (MA, BEM, GAO). Research in LPDS is supported by the National Cancer Institute (NCI) and the National Institutes of Health (NIH) Intramural Research Program (YCT).

Disclaimer: The views expressed in this chapter are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the US Government.


  1. 1.
    Adler M, Macdonald DA, Sellin LC, Parker GW (1996) Effect of 3,4-diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon 34:237–249PubMedCrossRefGoogle Scholar
  2. 2.
    Adler M, Keller JE, Sheridan RE, Deshpande SS (2001) Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon 39:233–243PubMedCrossRefGoogle Scholar
  3. 3.
    Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070PubMedCrossRefGoogle Scholar
  4. 4.
    Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 54:570–574PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, Jahn R, Niemann H (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620PubMedGoogle Scholar
  6. 6.
    Brin MF (2009) Basic and clinical aspects of BOTOX. Toxicon 54:676–682PubMedCrossRefGoogle Scholar
  7. 7.
    Chen S, Barbieri JT (2011) Association of botulinum neurotoxin serotype A light chain with plasma membrane-bound SNAP-25. J Biol Chem 286:15067–15072PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    de Paiva A, Meunier FA, Molgo J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A 96:3200–3205PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dolly JO, Ashton AC, McInnes C, Wadsworth JD, Poulain B, Tauc L, Shone CC, Melling J (1990) Clues to the multi-phasic inhibitory action of botulinum neurotoxins on release of transmitters. J Physiol (Paris) 84:237–246Google Scholar
  10. 10.
    Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596PubMedCrossRefGoogle Scholar
  11. 11.
    Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135–138PubMedCrossRefGoogle Scholar
  13. 13.
    Erdal E, Bartels F, Binscheck T, Erdmann G, Frevert J, Kistner A, Weller U, Wever J, Bigalke H (1995) Processing of tetanus and botulinum A neurotoxins in isolated chromaffin cells Naunyn Schmiedebergs. Arch Pharmacol 351:67–78CrossRefGoogle Scholar
  14. 14.
    Fernandez-Salas E, Ho H, Garay P, Steward LE, Aoki KR (2004a) Is the light chain subcellular localization an important factor in botulinum toxin duration of action? Mov Disord 19(Suppl 8):S23–S34CrossRefGoogle Scholar
  15. 15.
    Fernandez-Salas E, Steward LE, Ho H, Garay PE, Sun SW, Gilmore MA, Ordas JV, Wang J, Francis J, Aoki KR (2004b) Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A 101:3208–3213CrossRefGoogle Scholar
  16. 16.
    Fischer A, Sambashivan S, Brunger AT, Montal M (2012) Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 287:1657–1661PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, F compared with the long lasting type A Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278:1363–1371PubMedCrossRefGoogle Scholar
  18. 18.
    Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, Pavlin JA, Christopher GW, Eitzen EM Jr (1997) Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278:399–411PubMedCrossRefGoogle Scholar
  19. 19.
    Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129:93–179PubMedGoogle Scholar
  21. 21.
    Hatakeyama S, Watanabe M, Fujii Y, Nakayama KI (2005) Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. Cancer Res 65:7874–7879PubMedGoogle Scholar
  22. 22.
    Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439PubMedCrossRefGoogle Scholar
  23. 23.
    Jankovic J, Brin MF (1997) Botulinum toxin: historical perspective and potential new indications. Muscle Nerve Suppl 6:S129–S145PubMedCrossRefGoogle Scholar
  24. 24.
    Jurasinski CV, Lieth E, Do Dang AN, Schengrund CL (2001) Correlation of cleavage of SNAP-25 with muscle function in a rat model of botulinum neurotoxin type A induced paralysis. Toxicon 39:1309–1315PubMedCrossRefGoogle Scholar
  25. 25.
    Kalandakanond S, Coffield JA (2001) Cleavage of intracellular substrates of botulinum toxins A, C, and D in a mammalian target tissue. J Pharmacol Exp Thera 296:749–755Google Scholar
  26. 26.
    Keller JE (2006) Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience 139:629–637PubMedCrossRefGoogle Scholar
  27. 27.
    Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137–142PubMedCrossRefGoogle Scholar
  28. 28.
    Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kuo CL, Oyler GA, Shoemaker CB (2011) Accelerated neuronal cell recovery from botulinum neurotoxin intoxication by targeted ubiquitination. PLoS One 6:e20352PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lebeda FJ, Adler M, Erickson K, Chushak Y (2008) Onset dynamics of type A botulinum neurotoxin-induced paralysis. J Pharmacokinet Pharmacodyn 35:251–267PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11:629–643PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lundh H, Leander S, Thesleff S (1977) Antagonism of the paralysis produced by botulinum toxin in the rat The effects of tetraethylammonium, guanidine and 4-aminopyridine. J Neurol Sci 32:29–43PubMedCrossRefGoogle Scholar
  33. 33.
    Meunier FA, Schiavo G, Molgo J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105–113PubMedCrossRefGoogle Scholar
  34. 34.
    Meunier FA, Lisk G, Sesardic D, Dolly JO (2003) Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 22:454–466PubMedCrossRefGoogle Scholar
  35. 35.
    Morbiato L, Carli L, Johnson EA, Montecucco C, Molgó J, Rossetto O (2007) Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci 25:2697–2704PubMedCrossRefGoogle Scholar
  36. 36.
    Oyake D, Nishikawa H, Koizuka I, Fukuda M, Ohta T (2002) Targeted substrate degradation by an engineered double RING ubiquitin ligase. Biochem Biophys Res Commun 295:370–375PubMedCrossRefGoogle Scholar
  37. 37.
    Ravichandran E, Gong Y, Al-Saleem FH, Ancharski DM, Joshi SG, Simpson LL (2006) An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther 318:1343–1351PubMedCrossRefGoogle Scholar
  38. 38.
    Rogozhin AA, Pang KK, Bukharaeva E, Young C, Slater CR (2008) Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A. J Physiol 586:3163–3182PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786PubMedCrossRefGoogle Scholar
  40. 40.
    Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56:80–99PubMedCentralPubMedGoogle Scholar
  41. 41.
    Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC, Montecucco C (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103PubMedCrossRefGoogle Scholar
  42. 42.
    Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570PubMedCrossRefGoogle Scholar
  43. 43.
    Scott AB, Magoon EH, McNeer KW, Stager DR (1989) Botulinum treatment of strabismus in children. Trans Am Ophthalmol Soc 87:174–180PubMedCentralPubMedGoogle Scholar
  44. 44.
    Shapiro RL, Hatheway C, Swerdlow DL (1998) Botulism in the United States: a clinical and epidemiologic review. Ann Intern Med 129:221–228PubMedCrossRefGoogle Scholar
  45. 45.
    Siegel LS, Johnson-Winegar AD, Sellin LC (1986) Effect of 3,4-diaminopyridine on the survival of mice injected with botulinum neurotoxin type A, B, E, or F. Toxicol Appl Pharmacol 84:255–263PubMedCrossRefGoogle Scholar
  46. 46.
    Simpson LL (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188PubMedGoogle Scholar
  47. 47.
    Simpson LL (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol 26:427–453PubMedCrossRefGoogle Scholar
  48. 48.
    Simpson LL (2004) Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol 44:167–193PubMedCrossRefGoogle Scholar
  49. 49.
    Sobel J (2005) Botulism. Clin Infect Dis 41:1167–1173PubMedCrossRefGoogle Scholar
  50. 50.
    Souayah N, Karim H, Kamin SS, McArdle J, Marcus S (2006) Severe botulism after focal injection of botulinum toxin. Neurology 67:1855–1856PubMedCrossRefGoogle Scholar
  51. 51.
    Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM (2010) Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A 107:16554–16559PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vaidyanathan VV, Yoshino K, Jahnz M, Dorries C, Bade S, Nauenburg S, Niemann H, Binz T (1999) Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J Neurochem 72:327–337PubMedCrossRefGoogle Scholar
  53. 53.
    Veit M, Sollner TH, Rothman JE (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385:119–123PubMedCrossRefGoogle Scholar
  54. 54.
    Wang J, Zurawski TH, Meng J, Lawrence G, Olango WM, Finn DP, Wheeler L, Dolly JO (2011) A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 286:6375–6385PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Washbourne P, Pellizzari R, Rossetto O, Bortoletto N, Tugnoli V, De Grandis D, Eleopra R, Montecucco C (1998) On the action of botulinum neurotoxins A and E at cholinergic terminals. J Physiol Paris 92:135–139PubMedCrossRefGoogle Scholar
  56. 56.
    Wein LM, Liu Y (2005) Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci U S A 102:9984–9989PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178PubMedCrossRefGoogle Scholar
  58. 58.
    Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59:14–39PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou P (2005) Targeted protein degradation. Curr Opin Chem Biol 9:51–55PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou P, Bogacki R, McReynolds L, Howley PM (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 6:751–756PubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Yien Che Tsai
    • 1
  • Brian E. Moller
    • 2
  • Michael Adler
    • 2
  • George A. Oyler
    • 3
    • 4
  1. 1.Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Center for Cancer ResearchNational Institutes of HealthFrederickUSA
  2. 2.Neurobehavioral Toxicology Branch, Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundAberdeenUSA
  3. 3.Synaptic Research LLCBaltimoreUSA
  4. 4.University of Nebraska-LincolnLincolnUSA

Personalised recommendations