Skip to main content

Translocation, Entry into the Cell

  • Chapter
  • First Online:
Molecular Aspects of Botulinum Neurotoxin

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 4))

Abstract

Efficient targeted delivery of bioactive proteins into the cytoplasm of living cells is a major challenge for the pharmaceutical and biotechnology industries. Botulinum toxins have evolved an elegant mechanism to achieve exactly this. They specifically target pre-synaptic active neurons with sub nanomolar affinity and deliver an enzymatically active 50 kDa protease into the cytoplasm without affecting cell viability. Recent progress in understanding the molecular details of this delivery has opened new possibilities to understand and treat the disease botulism and to harness and adapt this delivery mechanism for other uses. This review describes our current understanding of the structure, function and interactions between protein domains in botulinum toxin, which act together to translocate a large soluble protein across cell membranes. As our understanding of these processes increases so too does the potential to incorporate botulinum toxin protein domains into new engineered proteins and achieve cytoplasmic delivery of other therapeutic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler M, Nicholson JD (2008) Evaluation of toosendanin as a botulinum neurotoxin antagonist. The Botulinum J 1(2):208–218

    Article  Google Scholar 

  2. Altwegg M, Hatheway CL (1988) Multilocus enzyme electrophoresis of Clostridium argentinense (Clostridium botulinum toxin type G) and phenotypically similar asaccharolytic clostridia. J Clin Microbiol 26(11):2447–2449

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Arndt JW, Chai Q, Christian T, Stevens RC (2006) Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. BioChemistry 45(10):3255–3262

    Article  CAS  PubMed  Google Scholar 

  4. Atluri PP, Ryan TA (2006) The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci 26(8):2313–2320

    Article  CAS  PubMed  Google Scholar 

  5. Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T (2004) Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 91(6):1461–1472

    Article  CAS  PubMed  Google Scholar 

  6. Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432(7019):925–929

    Article  CAS  PubMed  Google Scholar 

  7. Breidenbach MA, Brunger AT (2005) New insights into clostridial neurotoxin-SNARE interactions. Trends Mol Med 11(8):377–381

    Article  CAS  PubMed  Google Scholar 

  8. Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54(5):550–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3(9):1191–1194

    CAS  PubMed  Google Scholar 

  10. Brunger AT, Jin R, Breidenbach MA (2008) Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cell Mol Life Sci 65(15):2296–2306

    Article  CAS  PubMed  Google Scholar 

  11. Bullens RW, OHanlon GM, Wagner E, Molenaar PC, Furukawa K, Furukawa K, Plomp JJ, Willison HJ (2002) Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22(16):6876–6884

    CAS  PubMed  Google Scholar 

  12. Burgess A, Mornon JP, de Saint-Basile G, Callebaut I (2009) A concanavalin A-like lectin domain in the CHS1/LYST protein, shared by members of the BEACH family. Bioinformatics 25(10):1219–1222

    Article  CAS  PubMed  Google Scholar 

  13. Cai S, Kukreja R, Shoesmith S, Chang TW, Singh BR (2006) Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. Protein J 25(7-8):455–462

    Article  CAS  PubMed  Google Scholar 

  14. Chaddock JA, Marks PM (2006) Clostridial neurotoxins: structure-function led design of new therapeutics. Cell Mol Life Sci 63(5):540–551

    Article  CAS  PubMed  Google Scholar 

  15. Chaddock JA, Purkiss JR, Duggan MJ, Quinn CP, Shone CC, Foster KA (2000) A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Factors 18(2):147–155

    Article  CAS  PubMed  Google Scholar 

  16. Chaddock JA, Purkiss JR, Friis LM, Broadbridge JD, Duggan MJ, Fooks SJ, Shone CC, Quinn CP, Foster KA (2000) Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect Immun 68(5):2587–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chaddock JA, Herbert MH, Ling RJ, Alexander FC, Fooks SJ, Revell DF, Quinn CP, Shone CC, Foster KA (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr Purif 25(2):219–228

    Article  CAS  PubMed  Google Scholar 

  18. Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Duggan MJ, Quinn CP, Shone CC, Foster KA (2004) Retargeted clostridial endopeptidases: inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain. Mov Disord 19(Suppl 8):S42–S47

    Article  PubMed  Google Scholar 

  19. Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444(7122):1096–1100

    Article  CAS  PubMed  Google Scholar 

  20. Chassaing A, Pichard S, Araye-Guet A, Barbier J, Forge V, Gillet D (2011). Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain. FEBS J 278(2011):4516–4525

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Barbieri JT (2007) Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. J Biol Chem 282(35):25540–25547

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Kim JJ, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282(13):9621–9627

    Article  CAS  PubMed  Google Scholar 

  23. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596

    Article  CAS  PubMed  Google Scholar 

  24. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008). Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Du YZ, Cai LL, Li J, Zhao MD, Chen FY, Yuan H, Hu FQ (2011) Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int J Nanomedicine 6:1559–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Duggan MJ, Quinn CP, Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Shone CC, Foster KA (2002) Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem 277(38):34846–34852

    Article  CAS  PubMed  Google Scholar 

  27. Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S (2004) Role of metals in the biological activity of Clostridium botulinum neurotoxins. BioChemistry 43(8):2209–2216

    Article  CAS  PubMed  Google Scholar 

  28. Fischer A, Montal M (2006). Characterization of Clostridial botulinum neurotoxin channels in neuroblastoma cells. Neurotox Res 9(2–32): 93–100

    Article  CAS  Google Scholar 

  29. Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282(40):29604–29611

    Article  CAS  PubMed  Google Scholar 

  30. Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 104(25):10447–10452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4(12):e1000245

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M (2009) Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A 106(5):1330–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Flicker PF, Robinson JP, DasGupta BR (1999) Is formation of visible channels in a phospholipid bilayer by botulinum neurotoxin type B sensitive to its disulfide? J Struct Biol 128(3):297–304

    Article  CAS  PubMed  Google Scholar 

  34. Foster KA, Adams EJ, Durose L, Cruttwell CJ, Marks E, Shone CC, Chaddock JA, Cox CL, Heaton C, Sutton JM, Wayne J, Alexander FC, Rogers DF (2006) Re-engineering the target specificity of Clostridial neurotoxins - a route to novel therapeutics. Neurotox Res 9(2-3):101–107

    Article  CAS  PubMed  Google Scholar 

  35. Fu FN, Singh BR (1999) Calcein permeability of liposomes mediated by type A botulinum neurotoxin and its light and heavy chains. J Protein Chem 18(6):701–707

    Article  CAS  PubMed  Google Scholar 

  36. Fu FN, Busath DD, Singh BR (2002) Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. Biophys Chem 99(1):17–29

    Article  CAS  PubMed  Google Scholar 

  37. Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. BioChemistry 48(24):5631–5641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D (2008) Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 283(41):27668–27676

    Article  CAS  PubMed  Google Scholar 

  39. Gkeka P, Sarkisov L (2010) Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations. J Phys Chem B 114(2):826–839

    Article  CAS  PubMed  Google Scholar 

  40. Goodnough MC, Oyler G, Fishman PS, Johnson EA, Neale EA, Keller JE, Tepp WH, Clark M, Hartz S, Adler M (2002) Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett 513(2-3):163–168

    Article  CAS  PubMed  Google Scholar 

  41. Halpern JL, Neale EA (1995) Neurospecific binding, internalization, and retrograde axonal transport. Curr Top Microbiol Immunol 195:221–241

    CAS  PubMed  Google Scholar 

  42. Harper CB, Martin S, Nguyen TH, Daniels SJ, Lavidis NA, Popoff MR, Hadzic G, Mariana A, Chau N, McCluskey A, Robinson PJ, Meunier FA (2011). Dynamin inhibition blocks botulinum neurotoxin type-A endocytosis in neurons and delays botulism. J Biol Chem 286(41):35966–35976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278(34):32266–32274

    Article  CAS  PubMed  Google Scholar 

  44. Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A 82(6):1692–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354(1):1–6

    Article  CAS  PubMed  Google Scholar 

  46. Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444(7122):1092–1095

    Article  CAS  PubMed  Google Scholar 

  47. Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. BioChemistry 43(2):526–532

    Article  CAS  PubMed  Google Scholar 

  48. Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10(1):13–18

    Article  CAS  PubMed  Google Scholar 

  49. Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355(5):968–979

    Article  CAS  PubMed  Google Scholar 

  50. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386(1):233–245

    Article  CAS  PubMed  Google Scholar 

  51. Lacy DB, Stevens RC (1998) Unraveling the structures and modes of action of bacterial toxins. Curr Opin Struct Biol 8(6):778–784

    Article  CAS  PubMed  Google Scholar 

  52. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902

    Article  CAS  PubMed  Google Scholar 

  53. Lai B, Agarwal R, Nelson LD, Swaminathan S, London E (2010). Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. J Membr Biol 236(2):191–201

    Article  CAS  PubMed  Google Scholar 

  54. Lalli G, Herreros J, Osborne SL, Montecucco C, Rossetto O, Schiavo G (1999) Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci 112(Pt 16):2715–2724

    CAS  PubMed  Google Scholar 

  55. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11(9):431–437

    Article  CAS  PubMed  Google Scholar 

  56. Lee SJ, Yoon SH, Doh KO (2011) Enhancement of gene delivery using novel homodimeric tat Peptide formed by disulfide bond. J Microbiol Biotechnol 21(8):802–807

    Article  CAS  PubMed  Google Scholar 

  57. Li L, Singh BR (2000) Spectroscopic analysis of pH-induced changes in the molecular features of type A botulinum neurotoxin light chain. BioChemistry 39(21):6466–6474

    Article  CAS  PubMed  Google Scholar 

  58. Li MF, Shi YL (2006) Toosendanin interferes with pore formation of botulinum toxin type A in PC12 cell membrane. Acta Pharmacol Sin 27(1):66–70

    Article  PubMed  Google Scholar 

  59. Masuyer G, Thiyagarajan N, James PL, Marks PM, Chaddock JA, Acharya KR (2009) Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochem Biophys Res Commun 381(1):50–53

    Article  CAS  PubMed  Google Scholar 

  60. Masuyer G, Beard M, Cadd VA, Chaddock JA, Acharya KR (2011) Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. J Struct Biol 174(1):52–57

    Article  CAS  PubMed  Google Scholar 

  61. Matsushita K, Morrell CN, Lowenstein CJ (2005) A novel class of fusion polypeptides inhibits exocytosis. Mol Pharmacol 67(4):1137–1144

    Article  CAS  PubMed  Google Scholar 

  62. Montal MS, Blewitt R, Tomich JM, Montal M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313(1):12–18

    Article  CAS  PubMed  Google Scholar 

  63. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends in Biochem Sci 11:315–317

    Article  Google Scholar 

  64. Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12(10):442–446

    Article  CAS  PubMed  Google Scholar 

  65. Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380(1):76–80

    Article  CAS  PubMed  Google Scholar 

  66. Mushrush DJ, Koteiche HA, Sammons MA, Link AJ, McHaourab HS, Lacy DB (2011) Studies of the Mechanistic Details of the pH-dependent Association of Botulinum Neurotoxin with Membranes. J Biol Chem 286(30):27011–27018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Nakase I, Kobayashi S, Futaki S (2010) Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules. Biopolymers 94(6):763–770

    Article  CAS  PubMed  Google Scholar 

  68. Nishikawa S, Brodsky JL, Nakatsukasa K (2005) Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137(5):551–555

    Article  CAS  PubMed  Google Scholar 

  69. Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269(14):10498–10503

    CAS  PubMed  Google Scholar 

  70. O’Leary VB, Ovsepian SV, Raghunath A, Huo Q, Lawrence GW, Smith L, Dolly JO (2011). Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther 18(7):656–665

    Article  Google Scholar 

  71. Oblatt-Montal M, Yamazaki M, Nelson R, Montal M (1995) Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci 4(8):1490–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Parikh S, Singh BR (2007) Comparative membrane channel size and activity of botulinum neurotoxins A and E. Protein J 26(1):19–28

    Article  CAS  PubMed  Google Scholar 

  73. Peck MW (2009) Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55(183-265):320

    Google Scholar 

  74. Pellizzari R, Rossetto O, Schiavo G, Montecucco C (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 354(1381):259–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Pier CL, Chen C, Tepp WH, Lin G, Janda KD, Barbieri JT, Pellett S, Johnson EA (2011) Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett 585(1):199–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160(7):1139–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Ratts R, Trujillo C, Bharti A, vanderSpek J, Harrison R, Murphy JR (2005) A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc Natl Acad Sci U S A 102(43):15635–15640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Rossetto O, Montecucco C (2007) Peculiar binding of botulinum neurotoxins. ACS Chem Biol 2(2):96–98

    Article  CAS  PubMed  Google Scholar 

  79. Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104(1):359–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Schmid MF, Robinson JP, DasGupta BR (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364(6440):827–830

    Article  CAS  PubMed  Google Scholar 

  81. Shone CC, Hambleton P, Melling J (1987) A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 167(1):175–180

    Article  CAS  PubMed  Google Scholar 

  82. Sikorra S, Henke T, Galli T, Binz T (2008) Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J Biol Chem 283(30):21145–21152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212(1):16–21

    CAS  PubMed  Google Scholar 

  84. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717

    Article  CAS  PubMed  Google Scholar 

  85. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4(8):e1000129

    Article  PubMed Central  PubMed  Google Scholar 

  86. Stenmark P, Dong M, Dupuy J, Chapman ER, Stevens RC (2010) Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol 397(5):1287–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Sutton JM, Wayne J, Scott-Tucker A, O’Brien SM, Marks PM, Alexander FC, Shone CC, Chaddock JA (2005) Preparation of specifically activatable endopeptidase derivatives of Clostridium botulinum toxins type A, B, and C and their applications. Protein Expr Purif 40(1):31–41

    Article  CAS  PubMed  Google Scholar 

  88. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7(8):693–699

    Article  CAS  PubMed  Google Scholar 

  89. Tabb JS, Kish PE, Van Dyke R, Ueda T (1992) Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267(22):15412–15418

    CAS  PubMed  Google Scholar 

  90. Tamayo AG, Slater L, Taylor-Parker J, Bharti A, Harrison R, Hung DT, Murphy JR (2011). GRP78(BiP) facilitates the cytosolic delivery of anthrax lethal factor (LF) in vivo and functions as an unfoldase in vitro. Mol Microbiol 81(5):1390–1401

    Article  CAS  PubMed  Google Scholar 

  91. Turton K, Natesh R, Thiyagarajan N, Chaddock JA, Acharya KR (2004) Crystal structures of Erythrina cristagalli lectin with bound N-linked oligosaccharide and lactose. GlycoBiology 14(10):923–929

    Article  CAS  PubMed  Google Scholar 

  92. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Verderio C, Rossetto O, Grumelli C, Frassoni C, Montecucco C, Matteoli M (2006) Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep 7(10):995–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283(25):16993–17002

    Article  CAS  PubMed  Google Scholar 

  95. Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271(13):7694–7699

    Article  CAS  PubMed  Google Scholar 

  96. Yokosawa N, Tsuzuki K, Syuto B, Oguma K (1986) Activation of Clostridium botulinum type E toxin purified by two different procedures. J Gen Microbiol 132(7):1981–1988

    CAS  PubMed  Google Scholar 

  97. Zhong Z, Wan Y, Han J, Shi S, Zhang Z, Sun X (2011). Improvement of adenoviral vector-mediated gene transfer to airway epithelia by folate-modified anionic liposomes. Int J Nanomedicine 6:1083–1093

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Beard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Beard, M. (2014). Translocation, Entry into the Cell. In: Foster, K. (eds) Molecular Aspects of Botulinum Neurotoxin. Current Topics in Neurotoxicity, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9454-6_7

Download citation

Publish with us

Policies and ethics