Skip to main content

Absorption and Transport of Botulinum Neurotoxins

  • Chapter
  • First Online:
Molecular Aspects of Botulinum Neurotoxin

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 4))

Abstract

Botulinum neurotoxin (BoNT) is a potent toxin, which blocks the neurotransmitter release at neuromuscular junctions. BoNT can be acquired from the digestive tract (food-borne botulism, Clostridium botulinum intestinal colonization), respiratory tract (inhalational botulism), or wound (wound botulism). BoNT associates to nontoxic proteins (ANTPs), which have a main role in toxin protection against acidic pH and proteases, especially in the gastrointestinal tract. BoNT, which enters through the digestive or respiratory tract, has to first cross the epithelial barrier. This is achieved by a receptor-mediated transcytosis, which delivers the whole and active toxin at the basolateral side of epithelial cells. ANTPs containing hemagglutinins (HAs) may have an additional role in altering the intercellular junctions and facilitating toxin passage through the paracellular way. Then, BoNT disseminates locally and at distance via the blood/lymph circulation and possibly via a retrograde axonal transport to the target motor neuron endings, where the toxin uses an endocytic pathway permitting the release of the light (L)-chain into the cytosol and its subsequent proteolytic activity towards the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins involved in the neurotransmitter exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

references

  1. Abbruzzese G, Berardelli A (2006) Neurophysiological effects of botulinum toxin type A. Neurotox Res 9:109–114

    CAS  PubMed  Google Scholar 

  2. Ahsan CR et al (2005) Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells. J Pharmacol Exp Ther 315:1028–1035

    CAS  PubMed  Google Scholar 

  3. Al-Saleem FH et al (2008) The role of systemic handling in the pathophysiologic actions of botulinum toxin. J Pharmacol Exp Ther 326:856–863

    CAS  PubMed  Google Scholar 

  4. Al-Saleem FH et al (2012) Analysis of the mechanisms that underlie absorption of botulinum toxin by the inhalation route. Infect Immun 80:4133–4142

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Antonucci F et al (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    CAS  PubMed  Google Scholar 

  6. Arimitsu H et al (2003) Purification od fully activated Clostridium botulinum serotype B toxin for treatment of patients with dystonia. Infect Immun 71:1599–1603

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Arimitsu H et al (2008) Molecular properties of each subcomponent in Clostridium botulinum type B haemagglutinin complex. Microb Pathog 45:142–149

    CAS  PubMed  Google Scholar 

  8. Arndt JW et al (2005) The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J Mol Biol 346:1083–1093

    CAS  PubMed  Google Scholar 

  9. Arnon SS (1986) Infant botulism anticipating the second decade. J Infect Dis 154:201–206

    CAS  PubMed  Google Scholar 

  10. Arnon SS (1989) Infant botulism. In: Finegold SM, George WL (eds) Anaerobic infections in humans. Academic Press, San Diego, pp 601–609

    Google Scholar 

  11. Arnon SS et al (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    CAS  PubMed  Google Scholar 

  12. Arnon SS (2007) Creation and development of the public service orphan drug Human Botulism Immune Globulin. Pediatrics 119:785–789

    PubMed  Google Scholar 

  13. Ault A (2008) New botulinum toxin injection warnings issued: postinjection symptoms include dysphagia, ptosis andf shortness of breath, according to the FDA. Skin Allergy News 39:13

    Google Scholar 

  14. Benefield DA et al (2013) Molecular assembly of botulinum neurotoxin progenitor complexes. Proc Natl Acad Sci U S A 110:5630–5635

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bens M et al (1996) Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype. Am J Physiol 270:C1666–1674

    CAS  PubMed  Google Scholar 

  16. Bhatia KP et al (1999) Generalised muscular weakness after botulinum toxin injections for dystonia: a report of three cases. J Neurol Neurosurg Psychiatry 67:90–93

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bohnert S, Schiavo G (2005) Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem 280:42336–42344

    Google Scholar 

  18. Bohnert S et al (2006) Uptake and transport of clostridium neurotoxins. In: Alouf JE, Popoff MR (eds) The sourcebook of comprehensive bacterial protein toxins. Elsevier Academic Press, Amsterdam, pp 390–408

    Google Scholar 

  19. Bonventre PF (1979) Absorption of botulinal toxin from the gastrointestinal tract. Rev Infect Dis 1:663–667

    CAS  PubMed  Google Scholar 

  20. Breidenbach MA, Brunger AT (2005) 2.3 A crystal structure of tetanus neurotoxin light chain. BioChemistry 44:7450–7457

    CAS  PubMed  Google Scholar 

  21. Brook I (2007) Infant botulism. J Perinatol 27:175–180

    CAS  PubMed  Google Scholar 

  22. Burr DH, Sugiyama H (1982) Susceptibility to enteric botulinum colonization of antibiotic-treated adult mice. Infect Immun 36:103–106

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593–599

    CAS  PubMed  Google Scholar 

  24. Call JE, Cooke PH, Miller AJ (1995) In situ characterization of Clostridium botulinum neurotoxin synthesis and export. J Appl Bacteriol 79:257–263

    CAS  PubMed  Google Scholar 

  25. Capaldo CT, Macara IG (2007) Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 18:189–200

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 40:374–380

    CAS  PubMed  Google Scholar 

  27. Chadda R et al (2007) Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717

    CAS  PubMed  Google Scholar 

  28. Chen F, Kuziemko GM, Stevens RC (1998) Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species. Infect Immun 66:2420–2425

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Chen X, Gumbiner BM (2006) Crosstalk between different adhesion molecules. Curr Opin Cell Biol 18:572–578

    CAS  PubMed  Google Scholar 

  30. Chertow DS et al (2006) Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. Jama 296:2476–2479

    CAS  PubMed  Google Scholar 

  31. Coban A et al (2010) Iatrogenic botulism after botulinum toxin type A injections. Clin Neuropharmacol 33:158–160

    CAS  PubMed  Google Scholar 

  32. Coffield JA et al (1999) Characterization of a vertebrate neuromuscular junction that demonstrates selective resistance to botulinum toxin. J Pharmacol Exp Ther 289:1509–1516

    CAS  PubMed  Google Scholar 

  33. Couesnon A, Raffestin S, Popoff MR (2006) Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR. Microbiology 152:759–770

    CAS  PubMed  Google Scholar 

  34. Couesnon A, Pereira Y, Popoff MR (2008) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10:375–387

    CAS  PubMed  Google Scholar 

  35. Couesnon A, Shimizu T, Popoff MR (2009) Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell Microbiol 11:289–308

    CAS  PubMed  Google Scholar 

  36. Couesnon A et al (2010) Differential entry of Botulinum neurotoxin A into neuronal and intestinal cells: an ultrastructural approach. Botulinum J 1:375–392

    Google Scholar 

  37. Couesnon A et al (2012) Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine. PLoS Pathog 8:e1002583

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Cox N, Hinkle R (2002) Infant botulism. Am Fam Physician 65:1388–1392

    PubMed  Google Scholar 

  39. Dineen SS, Bradshaw M, Johnson EA (2003) Neurotoxin gene clusters in Clostridium botulinum type A strains: sequence comparison and evolutionary implications. Cur Microbiol 46:342–352

    Google Scholar 

  40. Dineen SS et al (2004) Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum. FEMS Microbiol Lett 235:9–16

    CAS  PubMed  Google Scholar 

  41. Dong M et al (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Dong M et al (2006) SV2 Is the Protein Receptor for Botulinum Neurotoxin A. Science 312:592–596

    CAS  PubMed  Google Scholar 

  43. Dong M et al (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Dressler D, Benecke R (2004) Autonomic side effects of botulinum toxin type B therapy. Adv Neurol 94:315–320

    PubMed  Google Scholar 

  45. Eisele KH et al (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555–565

    CAS  PubMed  Google Scholar 

  46. Elias M et al (2011) Evidence that botulinum toxin receptors on epithelial cells and neuronal cells are not identical: implications for development of a non-neurotropic vaccine. J Pharmacol Exp Ther 336:605–612

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Emsley P et al (2000) The structures of the Hc fragment of Tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894

    CAS  PubMed  Google Scholar 

  48. Evergren E et al (2007) Intersectin is a negative regulator of dynamin recruitment to the synaptic endocytic zone in the central synapse. J Neurosci 27:379–390

    CAS  PubMed  Google Scholar 

  49. Fischer A, Montal M (2013) Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon 5:00033–00030

    Google Scholar 

  50. Fotinou C et al (2001) The crystal structure of Tetanus Toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276:3274–3281

    Google Scholar 

  51. Fu FN, Sharma SK, Singh BR (1997) A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J Prot Chem 17:53–60

    Google Scholar 

  52. Fu Z et al (2006) Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. BioChemistry 45:8903–8911

    CAS  PubMed  Google Scholar 

  53. Fu Z et al (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. BioChemistry 48:5631–5641

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Fujinaga Y et al (1994) Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205:1291–1298

    CAS  PubMed  Google Scholar 

  55. Fujinaga Y et al (1997) The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig intestine, leading to the efficient absorption of the toxin. Microbiology 143:3841–3847

    CAS  PubMed  Google Scholar 

  56. Fujinaga Y et al (2000) Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467:179–183

    CAS  PubMed  Google Scholar 

  57. Fujinaga Y et al (2003) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum. Mol Biol Cell 14:4783–4793

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Fujinaga Y et al (2004) Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150:1529–1538

    CAS  PubMed  Google Scholar 

  59. Fujinaga Y (2006) Transport of bacterial toxins into target cells: pathways followed by cholera toxin and botulinum progenitor toxin. J Biochem 140:155–160

    CAS  PubMed  Google Scholar 

  60. Fujinaga Y et al (2009) A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption. Toxicon 54:583–586

    CAS  PubMed  Google Scholar 

  61. Fujinaga Y, Sugawara Y, Matsumura T (2013) Uptake of botulinum neurotoxin in the intestine. Curr Top Microbiol Immunol 364:45–59

    PubMed  Google Scholar 

  62. Fujita R et al (1995) Molecular characterization of two forms of nontoxic-non hemagglutinantinin components ofClostridium botulinum type A progenitor toxins. FEBS Lett 376:41–44

    CAS  PubMed  Google Scholar 

  63. Garner CG et al (1993) Time course of distant effects of local injections of botulinum toxin. Mov Disord 8:33–37

    CAS  PubMed  Google Scholar 

  64. Gauthier NC et al (2005) Helicobacter pylro VacA cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol Biol Cell 16:4852–4866

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gill DM (1987) Bacterial toxins: lethal amounts. In: Laskin AI, Lechevalier HA (eds) Toxins and enzymes. CRC Press, Cleveland, pp 127–135

    Google Scholar 

  66. Girlanda P et al (1992) Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry 55:844–845

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Gracies JM (2004) Physiological effects of botulinum toxin in spasticity. Mov Disord 19(Suppl 8):S120–128

    PubMed  Google Scholar 

  68. Gu S, Jin R (2013) Assembly and function of the botulinum neurotoxin progenitor complex. Curr Top Microbiol Immunol 364:21–44

    PubMed  Google Scholar 

  69. Gu S et al (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gumbiner BM (1996) Cell adhesion; the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    CAS  PubMed  Google Scholar 

  71. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Hasegawa K et al (2007) A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem 282:24777–24783

    CAS  PubMed  Google Scholar 

  73. Hatheway C, McCroskey LM (1987) Examination of feces and serum for diagnosis of infant botulism in 336 patients. J Clin Microbiol 25:2334–2338

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hines HB et al (2005) Characterization of botulinum progenitor toxins by mass spectrometry. Appl Environ Microbiol 71:4478–4486

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Holzer E (1962) Botulism caused by inhalation. Med Klin 41:1735–1740

    Google Scholar 

  76. Inoue K et al (1999) Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145:2533–2542

    CAS  PubMed  Google Scholar 

  77. Inoue K et al (2001) Clostridium botulinum type A haemagglutinin positive progenitor toxin (HA + -PTX) binds to oligosaccharides containing Galb1-4GlcNAc through one subcomponent of haemagglutinin (HA1). Microbiology 147:811–819

    CAS  PubMed  Google Scholar 

  78. Inoue K et al (2003) Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology 149:3361–3370

    CAS  PubMed  Google Scholar 

  79. Inui K et al (2010) Involvement of sialic acid in transport of serotype C1 botulinum toxins through rat intestinal epithelial cells. J Vet Med Sci 72:1251–1255

    CAS  PubMed  Google Scholar 

  80. Ito H et al (2011) HA-33 facilitates transport of the serotype D botulinum toxin across a rat intestinal epithelial cell monolayer. FEMS Immunol Med Microbiol 61:323–331

    Google Scholar 

  81. Jacobson MJ et al (2008) Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl Environ Microbiol 74:2778–2786

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Jankovic J, Brin MF (1991) Therapeutic uses of botulinum toxin. N Engl J Med 324:1186–1194

    CAS  PubMed  Google Scholar 

  83. Jin Y et al (2009) Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins-differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology 155:35–45

    CAS  PubMed  Google Scholar 

  84. Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526–532

    CAS  PubMed  Google Scholar 

  85. Kerneis S et al (1997) Conversion by Payer’s patche lymphocyte of human enterocytes into M cells that transport bacteria. Science 277:949–952

    CAS  PubMed  Google Scholar 

  86. Kerneis S et al (2000) Molecular studies of the intestinal mucosal barrier physiopathology using cocultures of epithelial and immune cells: a technical update. Microb Infect 2:1119–1124

    CAS  Google Scholar 

  87. Kim DY, Oh BM, Paik NJ (2006) Central effect of botulinum toxin type A in humans. Int J Neurosci 116:667–680

    CAS  PubMed  Google Scholar 

  88. Kitamura M, Sakaguchi S, Sakaguchi G (1969) Significance of 12S toxin of Clostridium botulinum type E. J Bacteriol 98:1173–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kitamura M et al (2005) Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741:1–3

    CAS  PubMed  Google Scholar 

  90. Kobayashi H et al (2003) A botulism case of a 12-year-old girl caused by intestinal colonization of Clostridium botulinum type Ab. Jpn J Infect Dis 56:73–74

    PubMed  Google Scholar 

  91. Kojima S et al (2005) Clostridium botulinum type A progenitor toxin binds to Intestine-407 cells via N-acetyllactosamine moiety. Biochem Biophys Res Commun 331:571–576

    CAS  PubMed  Google Scholar 

  92. Kouguchi H et al (2002) In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 277:2650–2656

    CAS  PubMed  Google Scholar 

  93. Kozaki S et al (1998) Characterization of Clostridium botulinum type B neurotoxin associated with infant botulism in Japan. Infect Immun 66:4811–4816

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kumaran D et al (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    CAS  PubMed  Google Scholar 

  95. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    CAS  PubMed  Google Scholar 

  96. Lacy DB et al (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct Biol 5:898–902

    CAS  PubMed  Google Scholar 

  97. Lalli G et al (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431–437

    CAS  PubMed  Google Scholar 

  98. Lamanna C (1959) The most poisonous poison. Science 130:763–772

    CAS  PubMed  Google Scholar 

  99. Lamaze C, Johannes L (2006a) Intracellular trafficking of bacterial and plant toxins. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins. Elsevier-Academic Press, Amsterdam, pp 135–153

    Google Scholar 

  100. Lamaze C, Johannes L (2006b) Intracellular trafficking of bacterial and plant protein toxins. In: Alouf JE, Popoff MR (eds) The sourcebook of bacterial protein toxins. Elsevier Academic Press, Amsterdam, pp 135–153

    Google Scholar 

  101. Lietzow MA et al (2008) Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J 27:420–425

    CAS  PubMed  Google Scholar 

  102. Lin G et al (2010) Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex. Appl Environ Microbiol 76:40–47

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Lindström M, Korkeala H (2006) Laboratory diagnosis of botulism. Clin Microbiol Rev 19:298–314

    PubMed Central  PubMed  Google Scholar 

  104. Low PA (2002) Autonomic neuropathies. Curr Opin Neurol 15:605–609

    PubMed  Google Scholar 

  105. Mahmut N et al (2002) Characterization of monoclonal antibodies against haemagglutinin associated with Clostridium botulinum type C neurotoxin. J Med Microbiol 51:286–294

    CAS  PubMed  Google Scholar 

  106. Mahrhold S et al (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011–2014

    CAS  PubMed  Google Scholar 

  107. Maksymowych AB, Simpson LI (2004) Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J Pharmacol Exp Ther 210:633–641

    Google Scholar 

  108. Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human carcinoma cells. J Biol Chem 273:21950–21957

    CAS  PubMed  Google Scholar 

  109. Maksymowych AB et al (1999) Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67:4708–4712

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Matsumura T et al (2008) The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption. Cell Microbiol 10:355–364

    CAS  PubMed  Google Scholar 

  111. May AJ, Whaler BC (1958) The absorption of Clostridium botulinum type A toxin from the alimentary canal. Br J Exp Path 39:307–316

    CAS  Google Scholar 

  112. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    CAS  PubMed  Google Scholar 

  113. Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5:221–240

    Google Scholar 

  114. McClane BA (2006) Clostridium perfringens enterotoxin. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins. Elsevier Academic Press, Amsterdam, pp 763–778

    Google Scholar 

  115. Middlebrook JL (1986) Cellular mechanism of action of botulism neurotoxin. J Toxicol 5:177–180

    CAS  Google Scholar 

  116. Middlebrook JL, Franz DR (1997) Botulinum toxins. In: Sidell FR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare. The Surgeon General, Washington, DC, pp 643–654

    Google Scholar 

  117. Miyata K et al (2009) Expression and stability of the nontoxic component of the botulinum toxin complex. Biochem Biophys Res Commun 384:126–130

    Google Scholar 

  118. Moberg LJ, Sugiyama H (1979) Microbial ecological basis of infant botulism as studied with germfree mice. Infect Immun 25:653–657

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Moberg LJ, Sugiyama H (1980) The rat as an animal model for infant botulism. Infect Immun 29:819–821

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Montal M, Botulinum N (2010) A marvel of protein design. Annu Rev Biochem 79:591–617

    CAS  PubMed  Google Scholar 

  121. Moreno-Lopez B et al (1997) Effects of botulinum neurotoxin type A on abducens motorneurons in the cat: alterations of the discharge pattern. Neuroscience 81:437–455

    CAS  PubMed  Google Scholar 

  122. Mostov KE, Verges M, Altschuler Y (2000) Membrane traffic in polarized epithelial cells. Cell Biol 12:483–490

    CAS  Google Scholar 

  123. Mutoh S et al (2003) Complete subunit structure of the Clostridium botulinum type D complex via intermediate assembly with nontoxic components. Biochemistry 42:10991–10997

    CAS  PubMed  Google Scholar 

  124. Nishikawa A et al (2004) The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells. Biochem Biophys Res Commun 319:327–333

    CAS  PubMed  Google Scholar 

  125. Nishiki T et al (1996) The high-affinity of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1B/GD1a. FEBS Lett 378:253–257

    CAS  PubMed  Google Scholar 

  126. Niwa K et al (2007) Role of nontoxic components of serotype D botulinum toxin complex in permeation through a Caco-2 cell monolayer, a model for intestinal epithelium. FEMS Immunol Med Microbiol 49:346–352

    CAS  PubMed  Google Scholar 

  127. Niwa K et al (2010) Sialic acid-dependent binding and transcytosis of serotype D botulinum neurotoxin and toxin complex in rat intestinal epithelial cells. Vet Microbiol 141:312–320

    Google Scholar 

  128. Oguma K et al (1999) Structure and function of Clostridium botulinum progenitor toxin. J Toxicol 18:17–34

    CAS  Google Scholar 

  129. Ohishi I, Sakaguchi G (1980) Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect Immun 28:303–309

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Ohishi I, Sugii S, Sakaguchi G (1977) Oral toxicites of Clostridium botulinum toxins in response to molecular size. Infect Immun 16:107–109

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ouzilou L et al (2002) Poliovirus transcytosis through M-like cells. J Gen Virol 83:2177–2182

    CAS  PubMed  Google Scholar 

  132. Park JB, Simpson LL (2003) Inhalation poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect Immun 71:1147–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Paton JC, Lawrence AJ, Steven IM (1983) Quantities of Clostridium botulinum organisms and toxin in feces and presence of Clostridium botulinum toxin in the serum of an infant with botulism. J Clin Microbiol 17:13–15

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Petro KA et al (2006) Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Toxicon 48:1033–1045

    Google Scholar 

  135. Pickett A (2009) Dysport pharmacological properties and factors that influence toxin action. Toxicon 54:683–689

    CAS  PubMed  Google Scholar 

  136. Popoff MR, Geny B (2009) Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta 1788:797–812

    CAS  PubMed  Google Scholar 

  137. Popoff MR, Marvaud JC (1999) Structural and genomic features of clostridial neurotoxins. In: Alouf JE, Freer JH (eds) The comprehensive sourcebook of bacterial protein toxins. Academic Press, London, pp 174–201

    Google Scholar 

  138. Poulain B, Popoff MR, Molgo J (2008) How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. Botulinum J 1:14–87

    Google Scholar 

  139. Predescu SA et al (2003) Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14:4997–5010

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Quinn CP, Minton NP (2001) Clostridial neurotoxins. In: Bahl H, Dürre P (eds) Clostridia. Willey-VCH, Veinheim, pp 211–250

    Google Scholar 

  141. Ramachandran R et al (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol 9:823–827

    CAS  PubMed  Google Scholar 

  142. Ravichandran E et al (2006) An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther 318:1343–1351

    CAS  PubMed  Google Scholar 

  143. Restani L et al (2011) Evidence for Anterograde Transport and Transcytosis of Botulinum Neurotoxin A (BoNT/A). J Neurosci 31:15650–15659

    CAS  PubMed  Google Scholar 

  144. Restani L et al (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Restani L et al (2012) Botulinum neurotoxin a impairs neurotransmission following retrograde transynaptic transport. Traffic 13:1083–1089

    CAS  PubMed  Google Scholar 

  146. Roche N et al (2008) Undesirable distant effects following botulinum toxin type A injection. Clin Neuropharmacol 31:272–280

    CAS  PubMed  Google Scholar 

  147. Roux A et al (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441:528–531

    CAS  PubMed  Google Scholar 

  148. Rummel A et al (2004a) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865–30870

    CAS  Google Scholar 

  149. Rummel A et al (2004b) The Hcc-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–643

    CAS  Google Scholar 

  150. Rummel A et al (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104:359–364

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Rummel A et al (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    CAS  PubMed  Google Scholar 

  152. Sabharanjak S et al (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Develop Cell 2:411–423

    CAS  Google Scholar 

  153. Sagane Y et al (2000) Characterization of nicking of the nontoxic-nonhemagglutinin components of Clostridium botulinum types C and D progenitor toxin. J Protein Chem 19:575–581

    CAS  PubMed  Google Scholar 

  154. Sagane Y et al (2001) Role of C-terminal region, of HA-33 component of botulinum toxin in hemagglutination. Biochem Biophys Res Commun 288:650–657

    CAS  PubMed  Google Scholar 

  155. Sakaguchi G (1983) Clostridium botulinum Toxins. Pharmac Ther 19:165–194

    CAS  Google Scholar 

  156. Sanford DC et al (2010) Inhalational botulism in rhesus macaques exposed to botulinum neurotoxin complex serotypes A1 and B1. Clin Vaccine Immunol 17:1293–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Sears CL (2001) The toxins of Bacteroides fragilis. Toxicon 39:1737–1746

    CAS  PubMed  Google Scholar 

  158. Sears CL, Franco AA, Wu S (2006) Bacteroides fragilis toxins. In: Alouf JE, Popoff MR (eds) The sourcebook of bacterial protein toxins. Elsevier Academic Press, Amsterdam, pp 535–546

    Google Scholar 

  159. Sebald M, Saimot G (1973) Le diagnostic biologique du botulisme. Med Mal Inf 3:83–85

    Google Scholar 

  160. Sharma DK et al (2003) Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J Biol Chem 278:7564–7572

    CAS  PubMed  Google Scholar 

  161. Sharma SK, Fu FN, Singh BR (1999) Molecular properties of a hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 18:29–38

    PubMed  Google Scholar 

  162. Sharma SK, Ramzan MA, Singh BR (2003) Separation of the components of type A botulinum neeurotoxin complex by electrophoresis. Toxicon 41:321–331

    CAS  PubMed  Google Scholar 

  163. Sheth AN et al (2008) International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin Infect Dis 47:1245–1251

    PubMed  Google Scholar 

  164. Simpson F et al (1999) SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nature Cell Biol 1:119–124

    CAS  PubMed  Google Scholar 

  165. Simpson LL, Coffield JA, Bakry N (1994) Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269:256–262

    CAS  PubMed  Google Scholar 

  166. Smith LA (2006) Bacterial protein toxins as biological weapons. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins. Elsevier Academic Press, Amsterdam, pp 1019–1030

    Google Scholar 

  167. Sobel J (2005) Botulism. Clin Infect Dis 41:1167–1173

    CAS  PubMed  Google Scholar 

  168. Stenmark P et al (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    PubMed Central  PubMed  Google Scholar 

  169. Sugawara Y et al (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189:691–700

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Sugawara Y, Fujinaga Y (2011) The botulinum toxin complex meets E-cadherin on the way to its destination. Cell Adh Migr 5:34–36

    PubMed Central  PubMed  Google Scholar 

  171. Sugii S, Ohishi I, Sakaguchi G (1977a) Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16:910–914

    CAS  Google Scholar 

  172. Sugii S, Ohishi I, Sakaguchi G (1977b) Intestinal absorption of botulinum toxins of different molecular sizes in rats. Infect Immun 17:491–496

    CAS  Google Scholar 

  173. Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Sugiyama H, Mills DC (1978) Intraintestinal toxin in infant mice challenged intragastrically with Clostridium botulinum spores. Infect Immun 21:59–63

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Sun S et al (2012) Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 52:5655–5662

    Google Scholar 

  176. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nature Struct Biol 7:693–699

    CAS  PubMed  Google Scholar 

  177. Tacket CO, Rogawski MA (1989) Botulism. In: Simpson LL (ed) Botulinum neurotoxin and Tetanus toxin Academic Press, San Diego, pp 351–378

    Google Scholar 

  178. Takei K, Yoshida Y, Yamada H (2005) Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem (Tokyo) 137:243–247

    CAS  Google Scholar 

  179. Taysse L et al (2005) Induction of acute lung injury after intranasal administration of toxin botulinum A complex. Toxicol Pathol 33:336–342

    CAS  PubMed  Google Scholar 

  180. Umland TC et al (1997) The structure of the receptor binding fragment Hc of tetanus neurotoxin. Nature Struct 4:788–792

    CAS  Google Scholar 

  181. Uotsu N et al (2005) Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells. Biochim Biophys Acta 1763:120–128

    PubMed  Google Scholar 

  182. Verderio C et al (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142–153

    CAS  PubMed  Google Scholar 

  183. Wells CL, Sugiyama H, Bland SE (1982) Resistance of mice with limited intestinal flora to enteric colonization by Clostridium botulinum. J Infect Dis 146:791–796

    CAS  PubMed  Google Scholar 

  184. Wiegand H, Erdmann G, Wellhoner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 292:161–165

    CAS  PubMed  Google Scholar 

  185. Wohlfarth K et al (2001) Remote F-wave changes after local botulinum toxin application. Clin Neurophysiol 112:636–640

    CAS  PubMed  Google Scholar 

  186. Wohlfarth K et al (2009) Dose equivalence of two commercial preparations of botulinum neurotoxin type A: time for a reassessment? Curr Med Res Opin 25:1573–1584

    CAS  PubMed  Google Scholar 

  187. Yoneyama T et al (2008) Clostridium botulinum serotype D neurotoxin and toxin complex bind to bovine aortic endothelial cells via sialic acid. FEMS Immunol Med Microbiol 54:290–298

    CAS  PubMed  Google Scholar 

  188. Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277:32815–32819

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R. Popoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Popoff, M., Connan, C. (2014). Absorption and Transport of Botulinum Neurotoxins. In: Foster, K. (eds) Molecular Aspects of Botulinum Neurotoxin. Current Topics in Neurotoxicity, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9454-6_3

Download citation

Publish with us

Policies and ethics