Understanding Biomineral Growth and Assembly for Engineering Novel Green Nanomaterials

Chapter

Abstract

Nanotechnology has great potential to make significant improvements in existing technologies. One such example is where learning from biology can help to develop bioinspired green nanomaterials. In this chapter, we will learn about uniqueness of biomineralisation. With the help of selected examples, we will discuss how we can take a step forward to design bioinspired technologies by understanding the controlled nucleation, growth and self-assembly typically displayed in biomineral formation. At the end of the chapter, a number of future avenues and challenges are outlined, which will help define future research directions.

Keywords

Sulphide Fe3O4 Polysaccharide Milling Calcite 

References

  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970CrossRefGoogle Scholar
  2. Aizenberg J, Hendler G (2004) Designing efficient microlens arrays: lessons from nature. J Mater Chem 14:2066–2072CrossRefGoogle Scholar
  3. Aizenberg J, Tkachenko A, Weiner S, Addadi L et al (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412:819–822CrossRefGoogle Scholar
  4. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686CrossRefGoogle Scholar
  5. Arakaki A, Nakazawa H, Nemoto M, Mori T et al (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999CrossRefGoogle Scholar
  6. Baeuerlein E (ed) (2000) Biomineralization: from biology to biotechnology and medical application. Wiley, ChichesterGoogle Scholar
  7. Cha JN, Shimizu K, Zhou Y, Christiansen SC et al (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365CrossRefGoogle Scholar
  8. Coradin T, Lopez PJ, Gautier C, Livage J (2004) From biogenic to biomimetic silica. CR Palevol 3:443–452CrossRefGoogle Scholar
  9. Currie HA, Patwardhan SV, Perry CC, Roach P et al (2007) Natural and artificial hybrid biomaterials. In: Kickelbick G (ed) Hybrid materials—synthesis, characterization and applications. Wiley, WeinheimGoogle Scholar
  10. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389CrossRefGoogle Scholar
  11. Currie HA, Perry CC (2009) Chemical evidence for intrinsic ‘Si’ within equisetum cell walls. Phytochemistry 70:2089–2095CrossRefGoogle Scholar
  12. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228CrossRefGoogle Scholar
  13. Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935CrossRefGoogle Scholar
  14. Ehrlich H, Deutzmann R, Brunner E, Cappellini E et al (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat Chem 2:1084–1088CrossRefGoogle Scholar
  15. Flörke OW, Graetsch HA, Brunk F, Benda L et al (2000) Silica. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, WeinheimGoogle Scholar
  16. Galloway JM, Bramble JP, Staniland SS (2013) Biomimetic synthesis of materials for technology. Chem Eur J 19:8710–8725CrossRefGoogle Scholar
  17. Galloway JM, Staniland SS (2012) Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. J Mater Chem 22:12423–12434CrossRefGoogle Scholar
  18. Gautier C, Lopez PJ, Livage J, Coradin T (2007) Influence of poly-L-lysine on the biomimetic growth of silica tubes in confined media. J Colloid Interface Sci 309:44–48CrossRefGoogle Scholar
  19. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223CrossRefGoogle Scholar
  20. Gong N, Wiens M, Schroder HC, Mugnaioli E et al (2010) Biosilicification of loricate choanoflagellate: organic composition of the nanotubular siliceous costal strips of Stephanoeca diplocostata. J Exp Biol 213:3575–3585CrossRefGoogle Scholar
  21. Harrison CC (1996) Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry 41:37–42CrossRefGoogle Scholar
  22. He QJ, Shi JL, Zhu M, Chen Y et al (2010) The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Micropor Mesopor Mater 131:314CrossRefGoogle Scholar
  23. Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874CrossRefGoogle Scholar
  24. Knauth P, Schoonman J (2002) Nanostructured materials. Kluwer, BostonGoogle Scholar
  25. Krasko A, Lorenz B, Batel R, Schröder HC et al (2000) Expression of silicatein and collagen genes in the marine sponge suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887CrossRefGoogle Scholar
  26. Kröger N and Poulsen N (2008) Diatoms–from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107Google Scholar
  27. Kwak SY, Dimasi E, Han YJ, Aizenberg J et al (2005) Orientation and Mg incorporation of calcite grown on functionalized self-assembled monolayers: a synchrotron X-ray study. Cryst Growth Des 5:2139–2145CrossRefGoogle Scholar
  28. Leonardos N, Read B, Thake B, Young JR (2009) No mechanistic dependence of photosynthesis on calcification in the Coccolithophorid Emiliania Huxleyi (Haptophyta)1. J Phycol 45:1046–1051CrossRefGoogle Scholar
  29. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  30. Ma JF, Tamai K, Yamaji N, Mitani N et al (2006) A silicon transporter in rice. Nature 440:688–691CrossRefGoogle Scholar
  31. Matus KJM, Hutchison JE, Peoples R, Rung S, et al (2011) Green nanotechnology challenges and opportunities. ACS Green Chemistry InstituteGoogle Scholar
  32. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New YorkGoogle Scholar
  33. Mann S, Webb J, Williams RJP (eds) (1989) Biomineralization. VCH, WeinheimGoogle Scholar
  34. Masse S, Laurent G, Chuburu F, Cadiou C et al (2008) Modification of the Stober process by a polyazamacrocycle leading to unusual core-shell silica nanoparticles. Langmuir 24:4026–4031CrossRefGoogle Scholar
  35. Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007) Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. Chem Bio Chem 8:1729–1735CrossRefGoogle Scholar
  36. Moisescu C, Bonneville S, Staniland S, Ardelean I et al (2011) Iron uptake kinetics and magnetosome formation by magnetospirillum gryphiswaldense as a function of pH, temperature and dissolved iron availability. Geomicrobiol J 28:590–600CrossRefGoogle Scholar
  37. Müller WEG (2003) Silicon biomineralization: biology, biochemistry, molecular biology, biotechnology. Springer, BerlinCrossRefGoogle Scholar
  38. Nancollas GH (1982) Biological mineralization and demineralization. Springer, BerlinCrossRefGoogle Scholar
  39. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  40. Notch Consulting Group (2006)Google Scholar
  41. Pagliaro M (2009) Silica-Based Materials for Advanced Chemical Applications. RSC Publishing, CambridgeGoogle Scholar
  42. Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47:7567–7582Google Scholar
  43. Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 9:1113–1121CrossRefGoogle Scholar
  44. Patwardhan SV, Emami FS, Berry RJ, Jones SE et al (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J Am Chem Soc 134:6244CrossRefGoogle Scholar
  45. Patwardhan SV, Patwardhan G, Perry CC (2007) Interactions of biomolecules with inorganic materials: principles, applications and future prospects. J Mater Chem 17:2875–2884CrossRefGoogle Scholar
  46. Perry CC (1989) Biogenic Silica. In: Mann S, Webb J and Williams RJP (eds.) Biomineralisation, chemical and biochemical perspectives. VCH, WeinheimGoogle Scholar
  47. Perry CC and Keeling-Tucker T (1998) Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem Commun 9:2587–2588Google Scholar
  48. Perry CC, Keeling-Tucker T (2003) Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid Polym Sci 281:652–664CrossRefGoogle Scholar
  49. Pogula SD, Patwardhan SV, Perry CC, Gillespie JW et al (2007) Continuous silica coatings on glass fibers via bioinspired approaches. Langmuir 23:6677–6683CrossRefGoogle Scholar
  50. Politi Y, Arad T, Klein E, Weiner S et al (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164CrossRefGoogle Scholar
  51. Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRefGoogle Scholar
  52. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci U.S.A 95:6234–6238CrossRefGoogle Scholar
  53. Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, San DiegoGoogle Scholar
  54. Tacke R (1999) Milestones in the biochemistry of silicon: from basic research to biotechnological applications. Angew Chem Int Ed 38:3015–3018CrossRefGoogle Scholar
  55. Tesson B and Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS ONE 8:e61675Google Scholar
  56. Treguer P, Nelson DM, Vanbennekom AJ, Demaster DJ et al (1995) The Silica balance in the world ocean–a reestimate. Science 268:375–379CrossRefGoogle Scholar
  57. Vrieling EG, Beelen TPM, Sun QY, Hazelaar S et al (2004) Ultrasmall, small, and wide angle X-ray scattering analysis of diatom biosilica: interspecific differences in fractal properties. J Mater Chem 14:1970–1975CrossRefGoogle Scholar
  58. Wainwright SA (1976) Mechanical design in organisms. Edward Arnold, LondonGoogle Scholar
  59. Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497CrossRefGoogle Scholar
  60. Zhou Y, Shimizu K, Cha JN, Stucky GD et al (1999) Efficient catalysis of polysiloxane synthesis by silicatein alpha requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed 38:780–782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations