Skip to main content

Polymer-Based Drug Delivery Systems for Solid Tumor Treatment

  • Chapter
  • First Online:
Focal Controlled Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 2843 Accesses

Abstract

Cytotoxic chemo- or radiotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to healthy tissues because the therapies are not selective for malignant cells. In this chapter we described the use of polymeric drug delivery systems (DDSs) for anticancer drugs that are used to treat solid tumors either locally or systemically. Locally injected formulations have increased the concentration of the drug at the tumor site, while systemically injected nanoparticles can also passively or actively target undetected metastases. We presented a thorough discussion of different types of in situ forming injectable hydrogels, followed by various micro- and nanoparticulate systems. Finally, the role of polymeric DDS in addressing the multidrug resistance, different cell populations in the tumor, and angiogenesis by delivering combined therapeutic agents was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASGP:

Asialoglycoprotein

CSC:

Cancer stem cells

DDS:

Drug delivery system

DOX:

Doxorubicin

ECM:

Extracellular matrix

ELP:

Elastin-like polypeptides

EPR (effect):

Enhanced permeability and retention (effect)

GI:

Gastrointestinal

HMDI:

Hexamethylene diisocyanate

HPMA:

N-(2-Hydroxypropyl)methacrylamide

IT:

Intratumoral

LCST:

Low critical solution temperature

MAbs:

Monoclonal antibodies

MPEG:

Methyl poly(ethylene glycol)

Mr:

Relative molecular mass

Mw:

Molecular Weight

NP:

Nanoparticles

PCL:

Poly(ε-caprolactone)

PEA:

Poly(ethylene adipate)

PEO:

Poly(ethylene oxide)

PEG:

Poly(ethylene glycol)

PES:

Poly(ethylene succinate)

PHA:

Poly(hexamethylene adipate)

PK:

Pharmacokinetics

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PNIPAM:

Poly(N-isopropylacrylamide)

RA:

Ricinoleic acid

SA:

Sebacic acid

PSA:

Poly(sebacic acid)

UCST:

Low critical solution temperature

VEGF:

Vascular endothelial growth factor

References

  1. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    CAS  PubMed  Google Scholar 

  2. Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10

    CAS  PubMed  Google Scholar 

  3. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    CAS  PubMed  Google Scholar 

  4. Cukierman E, Khan DR (2010) The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol 80(5):762–770

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E (2005) Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 167(2):475–488

    CAS  PubMed  Google Scholar 

  6. De Souza R, Zahedi P, Allen CJ, Piquette-Miller M (2010) Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv 17(6):365–375

    PubMed  Google Scholar 

  7. Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4(5):337–341

    CAS  PubMed  Google Scholar 

  8. Fowers KD, Baudys M, Rathi R, Shih C (2003) Thermally reversible gelling materials for safe and versatile depot delivery. Drug Dev Delivery 3(5)

    Google Scholar 

  9. Brem H, Ewend MG, Piantadosi S, Greenhoot J, Burger PC, Sisti M (1995) The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol 26(2):111–123

    CAS  PubMed  Google Scholar 

  10. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA et al (1995) Placebo-controlled trail of safety and efficacy of intaroperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345(8956):1008–1012

    CAS  PubMed  Google Scholar 

  11. Punglia RS, Morrow M, Winer EP, Harris JR (2007) Current concepts: local therapy and survival in breast cancer. N Engl J Med 356(23):2399–2405

    CAS  PubMed  Google Scholar 

  12. He CL, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127(3):189–207

    CAS  PubMed  Google Scholar 

  13. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862

    CAS  PubMed  Google Scholar 

  14. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51

    CAS  PubMed  Google Scholar 

  15. Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62(1–2):109–114, Research Support, U.S. Gov’t, P.H.S

    Google Scholar 

  16. Bekturov EA, Bimendina LA (1981) Interpolymer complexes. Adv Polymer Sci 41:99–147

    CAS  Google Scholar 

  17. Yoshida T, Takahashi M, Hatakeyama T, Hatakeyama H (1998) Annealing induced gelation of xanthan/water systems. Polymer 39(5):1119–1122

    CAS  Google Scholar 

  18. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26(10):2496–2500

    CAS  Google Scholar 

  19. Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26(4):805–812

    CAS  Google Scholar 

  20. Lee DS, Shim MS, Kim SW, Lee H, Park I, Chang TY (2001) Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun 22(8):587–592

    CAS  Google Scholar 

  21. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H et al (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72(1–3):203–215

    CAS  PubMed  Google Scholar 

  22. Shim MS, Lee HT, Shim WS, Park I, Lee H, Chang T et al (2002) Poly(D, L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D, L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J Biomed Mater Res 61(2):188–196

    CAS  PubMed  Google Scholar 

  23. Elstad NL, Fowers KD (2009) OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61(10):785–794

    CAS  PubMed  Google Scholar 

  24. Choi S, Baudys M, Kim SW (2004) Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm Res 21(5):827–831

    CAS  PubMed  Google Scholar 

  25. Matthes K, Mino-Kenudson M, Sahani DV, Holalkere N, Fowers KD, Rathi R et al (2007) EUS-guided injection of paclitaxel (OncoGel) provides therapeutic drug concentrations in the porcine pancreas (with video). Gastrointest Endosc 65(3):448–453

    PubMed  Google Scholar 

  26. Samlowski WE, McGregor JR, Jurek M, Baudys M, Zentner GM, Fowers KD (2006) ReGel (R) polymer-based delivery of interleukin-2 as a cancer treatment. J Immunother 29(5):524–535

    CAS  PubMed  Google Scholar 

  27. Zhu WW, Masaki T, Bae YH, Rathi R, Cheung AK, Kern SE (2006) Development of a sustained-release system for perivascular delivery of dipyridamole. J Biomed Mater Res B Appl Biomater 77B(1):135–143

    CAS  Google Scholar 

  28. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20(4):1–15

    CAS  PubMed  Google Scholar 

  29. Vukelja SJ, Anthony SP, Arseneau JC, Berman BS, Cunningham CC, Nemunaitis JJ et al (2007) Phase 1 study of escalating-dose OncoGel((R)) (ReGel((R))/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anticancer Drugs 18(3):283–289

    CAS  PubMed  Google Scholar 

  30. DuValla GA, Tarabar D, Seidela RH, Elstad NL, Fowers KD (2009) Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anticancer Drugs 20(2):89–95

    Google Scholar 

  31. Song MJ, Lee DS, Ahn JH, Kim DJ, Kim SC (2004) Thermosensitive sol-gel transition behaviors of poly(ethylene oxide)/aliphatic polyester/poly (ethylene oxide) aqueous solutions. J Polym Sci A Polym Chem 42(3):772–784

    CAS  Google Scholar 

  32. Bae YH, Huh KM, Kim Y, Park KH (2000) Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Control Release 64(1–3):3–13

    CAS  PubMed  Google Scholar 

  33. Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers. Polymer 40(22):6147–6155

    CAS  Google Scholar 

  34. Lee J, Joo MK, Oh H, Sohn YS, Jeong B (2006) Injectable gel: poly(ethylene glycol)-sebacic acid polyester. Polymer 47(11):3760–3766

    CAS  Google Scholar 

  35. Song SC, Lee SB, Jin JI, Sohn YS (1999) A new class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 32(7):2188–2193

    CAS  Google Scholar 

  36. Kang GD, Cheon SH, Khang G, Song SC (2006) Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur J Pharm Biopharm 63(3):340–346

    CAS  PubMed  Google Scholar 

  37. Chen SB, Pieper R, Webster DC, Singh J (2005) Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 288(2):207–218

    CAS  PubMed  Google Scholar 

  38. Chun C, Lee SM, Kim SY, Yang HK, Song SC (2009) Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 30(12):2349–2360

    CAS  PubMed  Google Scholar 

  39. Cho JK, Park JW, Song SC (2012) Injectable and biodegradable poly(organophosphazene) gel containing silibinin: its physicochemical properties and anticancer activity. J Pharm Sci 101(7):2382–2391

    CAS  PubMed  Google Scholar 

  40. Cho JK, Hong KY, Park JW, Yang HK, Song SC (2011) Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J Drug Target 19(4):270–280

    CAS  PubMed  Google Scholar 

  41. Kim JI, Lee BS, Chun C, Cho JK, Kim SY, Song SC (2012) Long-term theranostic hydrogel system for solid tumors. Biomaterials 33(7):2251–2259

    CAS  PubMed  Google Scholar 

  42. Gray WR, Sandberg LB, Foster JA (1973) Molecular model for elastin structure and function. Nature 246(5434):461–466

    CAS  PubMed  Google Scholar 

  43. Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25(11):567–571

    CAS  PubMed  Google Scholar 

  44. McDaniel JR, Callahan DJ, Chilkoti A (2010) Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev 62(15):1456–1467

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R et al (2007) Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist - sustained release of a local antiinflammatory therapeutic. Arthritis Rheum 56(11):3650–3661

    CAS  PubMed  Google Scholar 

  46. Urry DW, Parker TM, Reid MC, Gowda DC (1991) Biocompatibilty of the bioelastic materials, poly(GVGVP) and its gamma-irradiation cross-linked matrix - summary of generic biological test results. J Bioact Compat Polym 6(3):263–282

    CAS  Google Scholar 

  47. MacKay JA, Chen MN, McDaniel JR, Liu WG, Simnick AJ, Chilkoti A (2009) Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8(12):993–999

    PubMed Central  PubMed  Google Scholar 

  48. Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74(1–3):213–224

    CAS  PubMed  Google Scholar 

  49. Liu WG, MacKay JA, Dreher MR, Chen MN, McDaniel JR, Simnick AJ et al (2010) Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J Control Release 144(1):2–9

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Krasko MY, Shikanov A, Ezra A, Domb AJ (2003) Poly(ester anhydride)s prepared by the insertion of ricinoleic acid into poly(sebacic acid). J Polym Sci A Polym Chem 41(8):1059–1069

    CAS  Google Scholar 

  51. Shikanov A, Domb AJ (2006) Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer. Biomacromolecules 7(1):288–296

    CAS  PubMed  Google Scholar 

  52. Shikanov A, Domb AJ, Weiniger CF (2007) Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release 117(1):97–103

    CAS  PubMed  Google Scholar 

  53. Shikanov A, Shikanov S, Vaisman B, Golenser J, Domb AJ (2011) Cisplatin tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Chemother Res Pract 2011:175054

    PubMed Central  PubMed  Google Scholar 

  54. Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ (2004) Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A 69A(1):47–54

    CAS  Google Scholar 

  55. Shikanov A, Shikanov S, Vaisman B, Golenser J, Domb AJ (2008) Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Int J Pharm 358(1–2):114–120

    CAS  PubMed  Google Scholar 

  56. Shikanov S, Shikanov A, Gofrit O, Nyska A, Corn B, Domb AJ (2009) Intratumoral delivery of paclitaxel for treatment of orthotopic prostate cancer. J Pharm Sci 98(3):1005–1014

    CAS  PubMed  Google Scholar 

  57. Shikanov A, Vaisman B, Shikanov S, Domb AJ (2010) Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. J Biomed Mater Res A 92A(4):1283–1291

    CAS  Google Scholar 

  58. Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    CAS  PubMed  Google Scholar 

  59. Arias JL (2011) Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 11(1):1–17

    CAS  PubMed  Google Scholar 

  60. Kohane DS, Lipp M, Kinney RC, Anthony DC, Louis DN, Lotan N et al (2002) Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 59(3):450–459

    CAS  PubMed  Google Scholar 

  61. Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R (2006) Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A 77A(2):351–361

    CAS  Google Scholar 

  62. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM et al (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5(4):410–418

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tang BC, Fu J, Watkins DN, Hanes J (2010) Enhanced efficacy of local etoposide delivery by poly(ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials 31(2):339–344

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Shenoy DB, Amiji MA (2005) Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293(1–2):261–270

    CAS  PubMed  Google Scholar 

  65. Jeong YI, Seo SJ, Park IK, Lee HC, Kang IC, Akaike T et al (2005) Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzul L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 296(1–2):151–161

    CAS  PubMed  Google Scholar 

  66. Kos J, Obermajer N, Doljak B, Kocbek P, Kristl J (2009) Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Int J Pharm 381(2):106–112

    CAS  PubMed  Google Scholar 

  67. Liang B, He ML, Chan CY, Chen YC, Li XP, Li Y et al (2009) The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat. Biomaterials 30(23–24):4014–4020

    CAS  PubMed  Google Scholar 

  68. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340

    CAS  PubMed  Google Scholar 

  69. Sun B, Ranganathan B, Feng SS (2008) Multifunctional poly(D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 29(4):475–486

    PubMed  Google Scholar 

  70. Hallahan D, Geng L, Qu SM, Scarfone C, Giorgio T, Donnelly E et al (2003) Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3(1):63–74

    CAS  PubMed  Google Scholar 

  71. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    CAS  PubMed  Google Scholar 

  72. Vicent MJ, Duncan R (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 24(1):39–47

    CAS  PubMed  Google Scholar 

  73. Canal F, Sanchis J, Vicent MJ (2011) Polymer-drug conjugates as nano-sized medicines. Curr Opin Biotechnol 22(6):894–900

    CAS  PubMed  Google Scholar 

  74. Hu CMJ, Zhang LF (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111

    CAS  PubMed  Google Scholar 

  75. Duncan R, Vicent MJ (2010) Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62(2):272–282

    CAS  PubMed  Google Scholar 

  76. Duncan R (2009) Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 61(13):1131–1148

    CAS  PubMed  Google Scholar 

  77. Nowotnik DP, Cvitkovic E (2009) ProLindac (TM) (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev 61(13):1214–1219

    CAS  PubMed  Google Scholar 

  78. Rihova B (2009) Clinical experience with anthracycline antibiotics-HPMA copolymer-human immunoglobulin conjugates. Adv Drug Deliv Rev 61(13):1149–1158

    CAS  PubMed  Google Scholar 

  79. Vicent MJ, Ringsdorf H, Duncan R (2009) Polymer therapeutics: clinical applications and challenges for development preface. Adv Drug Deliv Rev 61(13):1117–1120

    CAS  PubMed  Google Scholar 

  80. Varticovski L, Lu ZR, Mitchell K, de Aos I, Kopecek J (2001) Water-soluble HPMA copolymer-wortmannin conjugate retains phosphoinositide 3-kinase inhibitory activity in vitro and in vivo. J Control Release 74(1–3):275–281

    CAS  PubMed  Google Scholar 

  81. Larson N, Ray A, Malugin A, Pike DB, Ghandehari H (2010) HPMA copolymer-aminohexylgeldanamycin conjugates targeting cell surface expressed GRP78 in prostate cancer. Pharm Res 27(12):2683–2693

    CAS  PubMed  Google Scholar 

  82. Satchi-Fainaro R, Puder M, Davies JW, Tran HT, Sampson DA, Greene AK et al (2004) Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10(3):255–261

    CAS  PubMed  Google Scholar 

  83. Zhou P, Li ZY, Chau Y (2010) Synthesis, characterization, and in vivo evaluation of poly(ethylene oxide-co-glycidol)-platinate conjugate. Eur J Pharm Sci 41(3–4):464–472

    PubMed  Google Scholar 

  84. Cho JK, Chun C, Kuh HJ, Song SC (2012) Injectable poly(organophosphazene)-camptothecin conjugate hydrogels: synthesis, characterization, and antitumor activities. Eur J Pharm Biopharm 81(3):582–590

    CAS  PubMed  Google Scholar 

  85. Wu WT, Shen J, Banerjee P, Zhou SQ (2010) Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566

    CAS  PubMed  Google Scholar 

  86. Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120):761–765

    CAS  PubMed  Google Scholar 

  87. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    CAS  PubMed  Google Scholar 

  88. Shaked Y, Henke E, Roodhart JML, Mancuso P, Langenberg MHG, Colleoni M et al (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14(3):263–273

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Shaked Y, Kerbel RS (2007) Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotheraphy. Cancer Res 67(15):7055–7058

    CAS  PubMed  Google Scholar 

  90. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM et al (2009) Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 8(10):2872–2881

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341

    PubMed  Google Scholar 

  93. Li HC, Fan XL, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815

    CAS  PubMed  Google Scholar 

  94. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379

    CAS  PubMed  Google Scholar 

  95. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    CAS  PubMed  Google Scholar 

  96. Hodkinson PS, Mackinnon AC, Sethi T (2007) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 83(11–12):733–741

    CAS  PubMed  Google Scholar 

  97. Li ZW, Dalton WS (2006) Tumor microenvironment and drug resistance hematologic malignancies. Blood Rev 20(6):333–342

    PubMed  Google Scholar 

  98. Serebriiskii I, Castello-Cros R, Lamb A, Golemis EA, Cukierman E (2008) Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol 27(6):573–585

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Zutter MM (2007) Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol 608:87–100

    CAS  PubMed  Google Scholar 

  100. Cosse JP, Sermeus A, Vannuvel K, Ninane N, Raes M, Michiels C (2007) Differential effects of hypoxia on etoposide-induced apoptosis according to the cancer cell lines. Mol Cancer 6:61

    PubMed Central  PubMed  Google Scholar 

  101. Ogiso Y, Tomida A, Tsuruo T (2002) Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs. Cancer Res 62(17):5008–5012

    CAS  PubMed  Google Scholar 

  102. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384

    CAS  PubMed  Google Scholar 

  103. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC et al (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52(14):4400–4418

    CAS  PubMed  Google Scholar 

  105. Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61(10):850–862

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariella Shikanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Shikanov, A., Domb, A.J. (2014). Polymer-Based Drug Delivery Systems for Solid Tumor Treatment. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_23

Download citation

Publish with us

Policies and ethics