Skip to main content

Nanotechnology-Based Ophthalmic Drug Delivery System

  • Chapter
  • First Online:
Focal Controlled Drug Delivery

Abstract

Ocular drug delivery is one of the most fascinating and challenging area of research due to its distinctive anatomical and physiological barriers. These barriers cause significant challenge for the drug delivery which is compounded by new therapeutic entities such as antibodies and oligonucleotides. Therefore, recently much attention has been focused towards the development of an accurate and sustained drug delivery system having efficient therapeutic efficacy. In this regard, nanotechnology plays a crucial role in the development of different drug delivery vehicles which can revolutionize the treatment regime of various ocular diseases. In this chapter we have discussed various nanotechnology-based drug delivery systems for the ophthalmic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharath S, Hiremath SR (1999) Ocular delivery systems of pefloxacin mesylate. Pharmazie 54(1):55–58

    CAS  PubMed  Google Scholar 

  2. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems-recent advances. Prog Retin Eye Res 17(1):33–58

    Article  CAS  PubMed  Google Scholar 

  3. Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14

    Article  CAS  PubMed  Google Scholar 

  4. Jain R, Majumdar S, Nashed Y, Pal D, Mitra AK (2004) Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization. Mol Pharm 1(4):290–299

    Article  CAS  PubMed  Google Scholar 

  5. Das S, Suresh PK (2010) Drug delivery to eye: special reference to nanoparticles. Int J Drug Deliv 2:12–21

    Article  CAS  Google Scholar 

  6. Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    Article  CAS  PubMed  Google Scholar 

  7. Mitra M, Dilnawaz F, Misra R, Harilal A, Verma R, Sahoo SK et al (2011) Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy. Cancer Nanotechnol 2(1–6):21–36

    Article  CAS  Google Scholar 

  8. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670(2–3):372–383

    Article  CAS  PubMed  Google Scholar 

  9. Bourges J-L, Gautier S-E, Delie F, Bejjani RA, Jeanny J-C, Gurny R, BenEzra D, Behar-Cohen F-F (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  PubMed  Google Scholar 

  10. Sakurai E, Ozeki H, Kunou N, Ogura Y (2001) Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 33:31–36

    Article  CAS  PubMed  Google Scholar 

  11. De Campos A, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81

    Article  PubMed  Google Scholar 

  12. Calvo P, Sanchez A, Martinez J, Lopez MI, Calonge M, Pastor JC, Alonso MJ (1996) Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res 13(2):311–315

    Article  CAS  PubMed  Google Scholar 

  13. Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305

    Article  CAS  PubMed  Google Scholar 

  14. Van Erdenbrugh B, Froyen L, Vanden HG (2008) Drying of crystalline drug nano-suspensions the importance of hydrophobicity on dissolution behaviour upon redispersion. Eur J Pharm Sci 35:127–135

    Article  Google Scholar 

  15. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G (2002) Eudragit RS100 nanosuspension for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16(1–2):53–61

    Article  CAS  PubMed  Google Scholar 

  16. Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lovelyn C, Attama A (2011) Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2:626–639

    Article  CAS  Google Scholar 

  18. Abdulrazik M, Tamilvanan S, Khoury K, Benita S (2001) Effect of submicron emulsion’s surface charge on ocular distribution of topical cyclosporin A. STP Pharma Sci 11(6):427–432

    CAS  Google Scholar 

  19. Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS (2012) Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv 2012:604204

    Article  PubMed Central  PubMed  Google Scholar 

  20. Guilatt LR, Couvreur P, Lambert G, Goldstein D, Bentia S, Dubernet C (2004) Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions.Chemistry and Physics of Lipids 131:1–13

    Google Scholar 

  21. Boussif O, Lezoualc’h F, Zanta M, Mergny M, Scherman D, Demeneix B et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hagigit T, Abdulrazik M, Orucov F, Valamanesh F, Hagedorn M, Lambert G et al (2010) Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J Control Release 145(3):297–305

    Article  CAS  PubMed  Google Scholar 

  23. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R (2003) Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm 56(3):307–318

    Article  CAS  PubMed  Google Scholar 

  24. Eljarrat-Binstock E, Domb AJ, Orucov F, Dagan A, Frucht-Pery J, Peer J (2008) In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res 33(3):269–275

    Article  CAS  PubMed  Google Scholar 

  25. Frucht-Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat-Binstock E, Domb A (2008) Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 25(10):1182–1186

    Article  Google Scholar 

  26. Vaka SR, Sammeta SM, Day LB, Murthy SN (2008) Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res 33(8):661–667

    Article  CAS  PubMed  Google Scholar 

  27. Raiskup-Wolf F, Eljarat-Binstock E, Rehak M, Domb A, Fruct-Perry J (2007) Transcorneal and transscleral iontophoresis of the dexamethasone phosphate into the rabbit eye. Cesk Slov Oftalmol 63(5):360–368

    CAS  PubMed  Google Scholar 

  28. Parkinson TM, Ferugoson E, Febraro S, Bakhtiary A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19:145–151

    Article  CAS  PubMed  Google Scholar 

  29. Shastri DH, Patel PB, Shelat PK, Shukla AK (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1:113–120

    Article  Google Scholar 

  30. Engel LS, Callegan MC, Hobden JM, Hill JM, O’Callaghan RJ (1995) Ocular drug delivery: a comparison of transcorneal iontophoresis to corneal collagen shields. Int J Pharm 123:173–179

    Article  Google Scholar 

  31. Rootman DS, Jantzen JA, Gonzalez JR, Fischer MJ, Beuerman R, Hill JM (1998) Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci 29:1397–1401

    Google Scholar 

  32. Ihre HR, Padilla De Jesús OL, Szoka FC Jr, Frechet JM (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13:443–452

    Article  CAS  PubMed  Google Scholar 

  33. Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JM, Szoka FC Jr (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 13:453–461

    Article  PubMed  Google Scholar 

  34. Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR Jr (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    Article  CAS  PubMed  Google Scholar 

  35. Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    Article  CAS  PubMed  Google Scholar 

  36. Kim H, Lizak MJ, Tansey G, Csaky KG, Robinson MR, Yuan P, Wang NS, Lutz RJ (2005) Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng 33(2):150–164

    Article  PubMed  Google Scholar 

  37. Ooya T, Lee J, Park K (2003) Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 93:121–127

    Article  CAS  PubMed  Google Scholar 

  38. Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  CAS  PubMed  Google Scholar 

  39. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I, Mireskandari K, Luthert P, Duncan R, Patterson S, Khaw P, Brocchini S (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:977–984

    Article  CAS  PubMed  Google Scholar 

  40. Wimmer N, Marano RJ, Kearns PS, Rakoczy EP, Toth I (2002) Syntheses of polycationic dendrimers on lipophilic peptide core for complexation and transport of oligonucleotides. Bioorg Med Chem Lett 12:2635–2637

    Article  CAS  PubMed  Google Scholar 

  41. Marano RJ, Wimmer N, Kearns PS, Thomas BG, Toth I, Brankov M, Rakoczy PE (2004) Inhibition of in vitro VEGF expression and choroidal neovascularization by synthetic dendrimer peptide mediated delivery of a sense oligonucleotide. Exp Eye Res 79:525–535

    Article  CAS  PubMed  Google Scholar 

  42. Calvo P, Vita-Jato JL, Alonso MJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50

    Article  CAS  Google Scholar 

  43. Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P (1993) Poly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 10(3):386–390

    Article  CAS  PubMed  Google Scholar 

  44. Losa C, Marchal-Huessler L, Orallo F, Vila Jato JL, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10(1):80–87

    Article  CAS  PubMed  Google Scholar 

  45. Mainardes RM, Silva LP (2004) Drug delivery systems: past, present, and future. Curr Drug Targets 5:449–455

    Article  CAS  PubMed  Google Scholar 

  46. Monem AS, Ali FM, Ismail MW (2000) Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm 198:29–38

    Article  CAS  PubMed  Google Scholar 

  47. Diebold Y, Jarrın M, Saez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564

    Article  CAS  PubMed  Google Scholar 

  48. Norley SG, Huang L, Rouse BT (1986) Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replication in vitro. J Immunol 136:681–685

    CAS  PubMed  Google Scholar 

  49. Bochot A, Fattal E, Boutet V, Deverre J, Jeanny J, Chacun H et al (2002) Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 43:253–259

    PubMed  Google Scholar 

  50. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in vitro studies. Acta Ophthalmol 88:901–904

    Article  CAS  PubMed  Google Scholar 

  51. Kawakami S, Yamamura K, Mukai T, Nishida K, Nakamura J, Sakaeda T, Nakashima M, Sasaki H (2001) Sustained ocular delivery of tilisolol to rabbits after topical administration or intravitreal injection of lipophilic prodrug incorporated in liposomes. J Pharm Pharmacol 53(8):1157–1161

    Article  CAS  PubMed  Google Scholar 

  52. Abrishami M, Zaeri-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari M, Malaekeh-Nikouei B (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 29(5):699–703

    Article  PubMed  Google Scholar 

  53. Müller RH, Maeder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  PubMed  Google Scholar 

  54. Attama AA, Schicke BC, Müller-Goymann CC (2006) Further characterization of theobroma oil-bees wax admixtures as lipid matrices for improved drug delivery systems. Eur J Pharm Biopharm 64(3):294–306

    Article  CAS  PubMed  Google Scholar 

  55. Youshia J, Kamel AO, El Shamy A, Mansour S (2012) Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int J Nanomedicine 7:2483–2496

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Liu Z, Zhang X, Wu H, Li J, Shu L, Liu R, Li L, Li N (2011) Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm 37(4):475–481

    Article  PubMed  Google Scholar 

  57. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245

    Article  CAS  PubMed  Google Scholar 

  58. Başaran E, Demirel M, Sirmagül B, Yazan Y (2010) Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1):37–47

    Article  PubMed  Google Scholar 

  59. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  CAS  PubMed  Google Scholar 

  60. Pervaiz S, Olivo M (2006) Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol 33(5–6):551–556

    Article  CAS  PubMed  Google Scholar 

  61. Bloquel C, Bourge JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58(11):1224–1242

    Article  CAS  PubMed  Google Scholar 

  62. Derycke AS, de Witte PA (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56(1):17–30

    Article  CAS  PubMed  Google Scholar 

  63. Sheppard JD Jr, Epstein RJ, Lattanzio FA Jr, Marcantonio D, Williams PB (2006) Argon laser photodynamic therapy of human corneal neovascularization after intravenous administration of dihematoporphyrin ether. Am J Ophthalmol 141:524–529

    Article  CAS  PubMed  Google Scholar 

  64. Prasmickaite LHA, Berg K (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem Photobiol 73(4):388–395

    Article  CAS  PubMed  Google Scholar 

  65. Nishiyama N, Iriyama A, Jang WD, Miyata K, Itaka K, Inoue Y, Takahashi H, Yanagi Y, Tamaki Y, Koyama H, Kataoka K (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 4(12):934–941

    Article  CAS  PubMed  Google Scholar 

  66. Cormode DP, Skajaa GO, Delshad A, Parker N, Jarzyna PA, Calcagno C, Galper MW, Skajaa T, Briley-Saebo KC, Bell HM, Gordonn RE, Fayad ZA, Woo SL, Mulder WJ (2011) A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver. Bioconjug Chem 22:3

    Article  Google Scholar 

  67. Tantrum JR, Penn JS, Jayagopal A (2012) Nanotechnology-guided imaging of retinal vascular disease. CRC, Boca Raton, FL, pp 365–381, Chapter 19

    Google Scholar 

  68. Jayagopal A, Russ PK, Haselton FR (2007) Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 18:1424–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 30(2):65–84

    Article  CAS  PubMed  Google Scholar 

  70. Palmer GM, Fontanella AN, Zhang G, Hanna G, Fraser CL, Dewhirst MW (2010) Optical imaging of tumor hypoxia dynamics. J Biomed Opt 15(6):066021

    Article  PubMed  Google Scholar 

  71. Pfister A, Zhang G, Zareno J, Horwitz A, Fraser C (2008) Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2(6):1252–1258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chen PC, Mwakwari S, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Kumar Sahoo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Dilnawaz, F., Sahoo, S.K. (2014). Nanotechnology-Based Ophthalmic Drug Delivery System. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_10

Download citation

Publish with us

Policies and ethics