Skip to main content

Meteorological and Remote-Sensing Satellites in Monitoring Climate Change

  • Chapter
  • First Online:
Meteorological Satellite Systems

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

  • 1656 Accesses

Abstract

With the continued evolution of satellite instruments and technology, meteorological satellites enable scientists to track long-term and short-term variability in climate. Such observations contribute to our understanding of climate change and its impacts. This is necessary for governments and decision-makers to define and implement appropriate mitigation and adaptation policies, and to provide new environmental services. Accurate long-term climate monitoring and predictions start from the best possible knowledge of the state of Earth’s various systems, including oceans, land, atmosphere, biosphere, and cryosphere. Satellite spacecraft and instruments enable continuous observation of solar activity, sea level rise, the temperature of the atmosphere and oceans, the state of the ozone layer, air pollution, and changes in sea ice and land ice. ‘National needs’ for weather forecasts and climate monitoring are turning into global needs that transcend political boundaries. Space instruments also allow the monitoring and gathering of data on space weather and solar activity that can greatly impact life on our planet.

“Global observations coordinated by WMO show that levels of carbon dioxide, the most abundant greenhouse gas in the atmosphere continue to increase steadily and show no signs of leveling off.”

—Michel Jarraud, Secretary-General of the WMO

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC AR4 WG1.: IPCC Fourth Assessment Report: Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L., ed. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2007)

    Google Scholar 

  2. IPCC AR4 WG2.: IPCC Fourth Assessment Report: Climate Change 2007: Impacts, Adaptation and Vulnerability. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., and Hanson, C.E., ed. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2007)

    Google Scholar 

  3. WMO.: http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables. Accessed 12 Aug 2013

  4. CEOS.: http://www.eohandbook.com/eohb2011/climate_variables.html. Accessed 12 Aug 2013

  5. WMO.: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2004)

    Google Scholar 

  6. Li, J., Schmidt, C.C., Nelson, J.P., Schmit, T.J., Menzel, W.P.: Estimation of total atmospheric ozone from GOES sounder radiances with high temporal resolution. Am. Meteorol. Soc., 18, 157–168 (2001)

    Google Scholar 

  7. Orsolini, Y.J., Karcher, F.: Total ozone imaging over North America with GOES-8 infrared measurements. Q. J. Roy. Meteor. Soc. , 126(565), 1557–1561 (2000)

    Google Scholar 

  8. Menzel, W.P., Holt, F.C., Schmit, T.J., Aune, R.M., Schreiner, A.J., Wade, G.S., Gray, D.G.: Application of GOES-8/9 soundings to weather forecasting and nowcasting. B. Am. Meteorol., 79, 2059–2077 (1998)

    Google Scholar 

  9. Menzel, W.P., and Purdom, J.F.W.: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. B. Am. Meteorol., 75, 757–781 (1994)

    Google Scholar 

  10. CIMSS (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison).: http://cimss.ssec.wisc.edu/goes/misc/990929.html. Accessed 12 Aug 2013

  11. NESDIS.: http://www.orbit.nesdis.noaa.gov/smcd/spb/ozone/. Accessed 12 Aug 2013

  12. NASA.: http://disc.sci.gsfc.nasa.gov/acdisc/TOMS. Accessed 12 Aug 2013

  13. NASA.: http://ozoneaq.gsfc.nasa.gov/omps/. Accessed 12 Aug 2013

  14. NASA.: http://npp.gsfc.nasa.gov/omps.html. Accessed 12 Aug 2013

  15. Kidd, C.: Satellite rainfall climatology: A review. International Journal of Climatology, 21, 1041–1066 (2001)

    Article  Google Scholar 

  16. Druen, B., Heinemann, G.: Rain rate estimation from a synergetic use of SSM/I, AVHRR and meso-scale numerical model data. Meteorol. Atmos. Phys. , 66, 65–85 (1998)

    Google Scholar 

  17. Scofield, R.A.: The NESDIS operational convective precipitation estimation technique. Mon. Weather. Rev. , 115, 1773–1792 (1987)

    Google Scholar 

  18. Arkin, P., Meisner, B.N.: The relationship between large-scale convective rainfall and cold cloud cover over the Western hemisphere during 1982–84. Montly Weather Review, 115, 51–74 (1987)

    Google Scholar 

  19. GEWEX.: http://www.gewex.org/gpcp.html. Accessed 12 Aug 2013

  20. NOAA.: http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html. Accessed 12 Aug 2013

  21. NOAA.: http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html. Accessed 12 Aug 2013

  22. NASA.: http://trmm.gsfc.nasa.gov/. Accessed 12 Aug 2013

  23. NASA.: http://trmm.gsfc.nasa.gov/publications_dir/rumbia_june-july_2013.html. Accessed 12 Aug 2013

  24. NASA.: http://www.nasa.gov/mission_pages/GPM/main/index.html. Accessed 12 Aug 2013

  25. NOAA.: http://www.elnino.noaa.gov/. Accessed 12 Aug 2013

  26. Ferraro, R., Weng, F., Grody, N., Basist, A.: An eight year (1987–1994) time series of rainfall, clouds, water vapor, snow-cover, and sea-ice derived from SSM/I measurements. B. Am. Meteorol., 77(5), 891–905 (1996)

    Google Scholar 

  27. Curtis, S.: Evolution of El Niño – Precipitation relationships from satellites and gauges. Journal of Geographical Research, 108, 1–8 (2003)

    Google Scholar 

  28. NASA.: http://science1.nasa.gov/earth-science/oceanography/physical-ocean/ocean-surface-topography/. Accessed 12 Aug 2013

  29. NSIDC.: http://nsidc.org/cryosphere/seaice/. Accessed 12 Aug 2013

  30. Pielke, R.A., Liston, G.E., Chapman, W.L., Robinson, D.A.: Actual and insolation-weighted Northern Hemisphere snow cover and sea-ice between 1973–2002. Clim. Dynamics, 22, 591–595 (2004)

    Google Scholar 

  31. Canadian Space Agency.: http://www.asc-csa.gc.ca/eng/satellites/radarsat2/. Accessed 12 Aug 2013

  32. eoPortal.: https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cryosat. Accessed 12 Aug 2013

  33. ESA.: http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat/CryoSat_reveals_major_loss_of_Arctic_sea_ice. Accessed 12 Aug 2013

  34. NASA.: http://icesat.gsfc.nasa.gov/icesat/. Accessed 12 Aug 2013

  35. NASA.: http://earthobservatory.nasa.gov/Features/ICESat/. Accessed 12 Aug 2013

  36. Houghton, J., Townshend, J., Dawson, K., Mason, P., Zillman, J., Simmons, A.: The GCOS at 20 years: the origin, achievement and future development of the Global Climate Observing System. Weather, 67(9), 227–235 (2012)

    Article  Google Scholar 

  37. WMO Presentation.: The Global Framework for Climate Services (GFCS) by J. Lengoasa, Deputy Secretary-General. http://wcrp-climate.org/JSC33/presentations/GFCS.pdf. Accessed 12 Aug 2013

  38. GFCS.: http://www.gfcs-climate.org. Accessed 12 Aug 2013

  39. World Climate Conference-3.: (August31 to September 4, 2009) http://www.wmo.int/wcc3/page_en.php. Accessed 12 Aug 2013

  40. GFCS.: http://www.gfcs-climate.org/content/about-gfcs. Accessed 12 Aug 2013

  41. GFCS.: http://www.gfcs-climate.org/components. Accessed 12 Aug 2013

  42. WMO.: Draft Global Framework for Climate Services. Concept Note, Ver 3.4, March 11, 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yin Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The author

About this chapter

Cite this chapter

Tan, SY. (2014). Meteorological and Remote-Sensing Satellites in Monitoring Climate Change. In: Meteorological Satellite Systems. SpringerBriefs in Space Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9420-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9420-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9419-5

  • Online ISBN: 978-1-4614-9420-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics