Skip to main content

Computational Problems and Numerical Techniques for the Analysis of Phononic Crystals

  • Chapter
Phononic Crystals

Abstract

The propagation of elastic or acoustic waves in phononic crystals can be described via wave equations with periodically varying coefficients. In this chapter, we give an overview of different methods that have been used to compute phononic band structures and transmission through phononic crystals, and investigate the properties of phononic crystal waveguides and cavities. We first present general considerations on the equations and the types of problems that have been considered. We then introduce four different methods: (layer) multiple scattering theory, plane wave expansion, finite-difference time-domain, and finite element methods. Rather than giving a full account of each method, we stress their generic properties, capacities, and limitations. We hope this discussion will be useful for the reader to decide which method to select for a specific problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A supercell extends a few periods away from the defect it encloses. Modal computations then give physically meaningful results when only evanescent Bloch waves of the elementary phononic crystal exist, i.e., inside a complete band gap. Furthermore, the number of phononic crystal rows must be sufficient so that the Bloch wave with the least imaginary part of the wave vector can be considered negligible on the boundary of the supercell.

References

  1. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973)

    Google Scholar 

  2. D. Royer, E. Dieulesaint, Elastic Waves in Solids (Wiley, New York, 1999)

    Google Scholar 

  3. IEEE standard on piezoelectricity 176-1987. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(5), 717 (1996)

    Google Scholar 

  4. M. Wilm, S. Ballandras, V. Laude, Th. Pastureaud, A full 3-D plane-wave-expansion model for piezocomposite structures. J. Acoust. Soc. Am. 112, 943–952 (2002)

    Article  Google Scholar 

  5. R.P. Moiseyenko, V. Laude, Material loss influence on the complex band structure and group velocity in phononic crystals. Phys. Rev. B 83(6), 064301 (2011)

    Google Scholar 

  6. V. Laude, Y. Achaoui, S. Benchabane, A. Khelif, Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80(9), 092301 (2009)

    Google Scholar 

  7. I.E. Psarobas, N. Stefanou, A. Modinos, Phononic crystals with planar defects. Phys. Rev. B 62(9), 5536–5540 (2000)

    Article  Google Scholar 

  8. R. Sainidou, N. Stefanou, A. Modinos, Formation of absolute frequency gaps in three-dimensional solid phononic crystals. Phys. Rev. B 66(21), 212301 (2002)

    Google Scholar 

  9. R. Sainidou, N. Stefanou, I.E. Psarobas, A. Modinos, A layer-multiple-scattering method for phononic crystals and heterostructures of such. Comput. Phys. Commun. 166, 197–240 (2005)

    Article  Google Scholar 

  10. I.E. Psarobas, Viscoelastic response of sonic band-gap materials. Phys. Rev. B 64(1), 012303 (2001)

    Google Scholar 

  11. V. Laude, M. Wilm, S. Benchabane, A. Khelif, Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys. Rev. E 71, 036607 (2005)

    Article  Google Scholar 

  12. J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M.S. Kushwaha, P. Halevi, Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems. J. Phys. Condens. Matter 6(42), 8759–8770 (1994)

    Article  Google Scholar 

  13. T.-T. Wu, Z.-G. Huang, S. Lin, Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B 69(9), 094301 (2004)

    Google Scholar 

  14. M. Wilm, A. Khelif, S. Ballandras, V. Laude, B. Djafari-Rouhani, Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Phys. Rev. E 67, 065602 (2003)

    Article  Google Scholar 

  15. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74, 046610 (2006)

    Article  Google Scholar 

  16. M.I. Hussein, Reduced bloch mode expansion for periodic media band structure calculations, Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2109), 2825–2848 (2009)

    Article  MathSciNet  Google Scholar 

  17. V. Laude, J.C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. Papanikolaou, J.M. Escalante, A. Martinez, Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Opt. Express 19(10), 9690–9698 (2011)

    Article  Google Scholar 

  18. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–330 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Khelif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laude, V., Khelif, A. (2016). Computational Problems and Numerical Techniques for the Analysis of Phononic Crystals. In: Khelif, A., Adibi, A. (eds) Phononic Crystals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9393-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9393-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9392-1

  • Online ISBN: 978-1-4614-9393-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics