Skip to main content

A State Space Approach to Modeling IRT and Population Parameters from a Long Series of Test Administrations

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 66))

Abstract

In certain educational assessments, there are many administrations of test forms of the same assessment over a specific period. The issue of equating these test forms from long series of test administrations is complicated, because the statistical properties of the items and the student populations can be volatile. This study demonstrates the possibilities of time series modeling for monitoring item and population characteristics in the context of test equating. More specifically, seasonal effects, trends, sudden breaks (or jumps), and outliers in population means and item parameters are studied in a series of simulations by making use of the frameworks of item response theory (IRT) and state space modeling. Three different state space models are used: the local level model, the linear trend model, and a seasonal model with linear trend. The goal is to capture peculiarities in the data in real time, so that, if necessary, immediate action can be taken. Preliminary results of the simulations indicate that many of the effects, as well as combinations, are well captured with the developed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. Lord & M. Novick (Eds.), Statistical theories of mental test scores (pp. 397–472). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Brinkhuis, M., & Maris, G. (2009). Dynamic parameter estimation in student monitoring systems (Technical Report No. 2009–1). Arnhem: Cito.

    Google Scholar 

  • Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15, 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov chain Monte Carlo in practice. Boca Raton, FL: Chapman & Hall.

    MATH  Google Scholar 

  • Glas, C. (1998). Detection of differential item functioning using Lagrange multiplier tests. Statistica Sinica, 8, 647–667.

    MathSciNet  MATH  Google Scholar 

  • Glas, C. (2000). Item calibration and parameter drift. In W. van der Linden & C. Glas (Eds.), Computer adaptive testing: Theory and practice (pp. 183–200). Boston, MA: Kluwer.

    Chapter  Google Scholar 

  • Harvey, A. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.

    Article  Google Scholar 

  • Keller, L., & Keller, R. (2011). The long-term sustainability of different item response theory scaling methods. Educational and Psychological Measurement, 71, 362–379.

    Article  Google Scholar 

  • Kolen, M., & Brennan, R. (2004). Test equating, scaling, and linking: Methods and practices. New York: Springer.

    Book  MATH  Google Scholar 

  • Lee, Y.-H., & Haberman, S. (2012). Harmonic regression and scale stability. In IMPS. Lincoln, NE.

    Google Scholar 

  • Lee, Y.-H., & von Davier, A. (in press). Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques. Psychometrika.

    Google Scholar 

  • Li, D., Li, S., & von Davier, A. (2011). Applying time series analysis to detect scale drift. In A. von Davier (Ed.), Statistical models for test equating, scaling, and linking (pp. 327–346). New York: Springer.

    Google Scholar 

  • Lindquist, A., & Picci, G. (1981). State space models for Gaussian stochastic processes. In M. Hazewinkel & J. Willems (Eds.), Stochastic systems: The mathematics of filtering and identification and applications (pp. 169–204). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Liu, J., & West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice (pp. 197–223). New York: Springer.

    Chapter  Google Scholar 

  • Lord, F., & Novick, M. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Oud, J., & Singer, H. (2008). Continuous time modeling of panel data: SEM versus filter techniques. Statistica Neerlandica, 62, 4–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Petris, G. (2010). An R package for dynamic linear models. Journal of Statistical Software, 36, 1–16.

    Article  Google Scholar 

  • Petris, G., Petrone, S., & Campagnoli, P. (2009). Dynamic linear models. New York: Springer.

    Book  MATH  Google Scholar 

  • Pitt, M., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94, 590–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, C., & Sinharay, S. (Eds.). (2007). Handbook of statistics, volume 26: Psychometrics. Amsterdam: Elsevier.

    Google Scholar 

  • Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81, 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50, 281–289.

    Article  MathSciNet  Google Scholar 

  • VanBrackle, L., & Reynolds, M. (1997). EWMA and CUSUM control charts in the presence of correlation. Communications in Statistics: Simulation and Computation, 26, 979–1008.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Linden, W., & Hambleton, R. (Eds.). (1997). Handbook of modern item response theory. New York: Springer.

    MATH  Google Scholar 

  • van Rijn, P., Dolan, C., & Molenaar, P. (2010). State space methods for item response modeling of multi-subject time series. In P. Molenaar & K. Newell (Eds.), Individual pathways of change: Statistical models for analyzing learning and development (pp. 125–151). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Veerkamp, W., & Glas, C. (2000). Detection of known items in adaptive testing with a statistical quality control method. Journal of Educational and Behavioral Statistics, 25, 373–389.

    Article  Google Scholar 

  • von Davier, A. (2012). The use of quality control and data mining techniques for monitoring scaled scores: An overview (Technical Report No. RR-12-20). Princeton, NJ: Educational Testing Service

    Google Scholar 

  • West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models. New York: Springer.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Frank Rijmen and Lili Yao for helpful comments on an earlier draft of the manuscript. In addition, we are obliged to Kim Fryer for editorial assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Wanjohi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Wanjohi, R.G., van Rijn, P.W., von Davier, A.A. (2013). A State Space Approach to Modeling IRT and Population Parameters from a Long Series of Test Administrations. In: Millsap, R.E., van der Ark, L.A., Bolt, D.M., Woods, C.M. (eds) New Developments in Quantitative Psychology. Springer Proceedings in Mathematics & Statistics, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9348-8_8

Download citation

Publish with us

Policies and ethics