Skip to main content

A Comparison of Algorithms for Dimensionality Analysis

  • Conference paper
  • First Online:
New Developments in Quantitative Psychology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 66))

  • 1751 Accesses

Abstract

Item response theory (IRT) models have been widely used for various educational and psychological testing purposes such as detecting differential item functioning (DIF), test construction, ability estimation, equating, and computer adaptive testing. The main assumption underlying these models is that local independence holds with respect to the latent ability being modeled (Lord and Novick 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Applied Psychological Measurement, 13, 113–127.

    Article  Google Scholar 

  • Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item validity from a multidimensional perspective. Journal of Educational Measurement, 29, 67–91.

    Article  Google Scholar 

  • Ackerman, T. A., Gierl, M. J., & Walker, C. M. (2003). Using multidimensional item response theory to evaluate educational and psychological tests. Educational Measurement: Issues and Practice, 22(3), 37–51.

    Article  Google Scholar 

  • Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information item factor analysis. Applied Psychological Measurement, 12, 261–280.

    Article  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  • Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Cudeck, R. (2000). Exploratory factor analysis. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 265–296). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267–269.

    Article  Google Scholar 

  • Han, K. T. (2006). WinGen: Windows software that generates IRT parameters and item responses. Applied Psychological Measurement, 31, 457–459.

    Article  Google Scholar 

  • Hattie, J. (1984). An empirical study of various indices for determining unidimensionality. Multivariate Behavioral Research, 19, 49–78.

    Article  Google Scholar 

  • Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  • Hulin, C. L., Drasgow, F., & Parsons, L. K. (1983). Item response theory. Homewood, IL: Dow-Jones-Irwin.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kim, H. R. (1994). New techniques for the dimensionality assessment of standardized test data (Unpublished doctoral dissertation). University of Illinois, Urbana–Champaign.

    Google Scholar 

  • Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analysis and multidimensional item response models. Multivariate Behavioral Research, 26, 457–477.

    Article  Google Scholar 

  • Lord, F. M. (1980). Application of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mentaltest scores. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of Mathematical and Statistical Psychology, 34, 100–117.

    Article  MathSciNet  Google Scholar 

  • McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379–396.

    Article  Google Scholar 

  • McLeod, L. D., Swygert, K. A., & Thissen, D. (2001). Factor analysis for items scored in two categories. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 189–216). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Mislevy, R. J., & Bock, R. D. (1990). BILOG-MG 3: Item analysis and test scoring with binary logistic models [Computer software]. Chicago, IL: Scientific Software International.

    Google Scholar 

  • Mulaik, S. A. (2009). The foundations of factor analysis. New York: CRC.

    MATH  Google Scholar 

  • Muthén, B. (1977). Statistical methodology for structural equation models involving latent variables with dichotomous indicators (Unpublished doctoral dissertation). Department of Statistics, University of Uppsala, Uppsala.

    Google Scholar 

  • Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide. Los Angeles, CA: Author.

    Google Scholar 

  • Nandakumar, R. (1994). Assessing the dimensionality of a set of item responses: Comparison of different approaches. Journal of Educational Measurement, 31, 17–35.

    Article  Google Scholar 

  • Nandakumar, R., & Stout, W. (1993). Refinements of Stout’s procedure for assessing latent trait unidimensionality. Journal of Educational Statistics, 18, 41–68.

    Article  Google Scholar 

  • Nandakumar, R., & Yu, F. (1996). Empirical validation of DIMTEST on nonnormal ability distributions. Journal of Educational Measurement, 33, 355–368.

    Article  Google Scholar 

  • Parry, C. D., & McArdle, J. J. (1991). An applied comparison of methods for least-squares factor analysis of dichotomous variables. Applied Psychological Measurement, 15, 35–46.

    Article  Google Scholar 

  • Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4, 207–230.

    Article  Google Scholar 

  • Stone, C. A., & Yeh, C.-C. (2006). Assessing the dimensionality and factor structure of multiple-choice exams: An empirical comparison of methods using the multistate bar examination. Educational and Psychological Measurement, 66, 193–214.

    Article  MathSciNet  Google Scholar 

  • Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617.

    Article  MathSciNet  MATH  Google Scholar 

  • Stout, W. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27, 159–203.

    Article  MathSciNet  Google Scholar 

  • Thissen, D., & Wainer, H. (2001). Test scoring. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wilson, D. T., Wood, R., & Gibbons, R. (2003). TESTFACT: Test scoring, item statistics, and item factor analysis [Computer program]. Chicago, IL: Scientific Software International.

    Google Scholar 

  • Yeh, C.-C. (2007). The effect of guessing on assessing dimensionality in multiple-choice tests: A Monte Carlo study with application. Unpublished dissertation. University of Pittsburg.

    Google Scholar 

  • Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64, 129–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2002). BILOG-MG for windows [Computer software]. Lincolnwood, IL: Scientific Software International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Sen, S., Cohen, A.S., Kim, SH. (2013). A Comparison of Algorithms for Dimensionality Analysis. In: Millsap, R.E., van der Ark, L.A., Bolt, D.M., Woods, C.M. (eds) New Developments in Quantitative Psychology. Springer Proceedings in Mathematics & Statistics, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9348-8_14

Download citation

Publish with us

Policies and ethics