Effect of Grid Geometry on IEC Performance

  • George H. Miley
  • S. Krupakar Murali
Chapter

Abstract

Grid geometry plays an important role in the performance of a gridded spherical IEC device because the ion recirculation, and hence the reaction rate, is strongly affected by the orientation and size of openings in the cathode in grid design. In Chap. 3 we learned that cathodes with reasonably large openings face each other so that an ion could easily recirculate via ion microchannels (corresponding to a high effective transparency) and perform much better than either a solid cathode or a cathode with holes that do not point directly at each other (i.e., causing a low effective transparency). Aside from these major features, various researchers have investigated the effect of a variety of grid opening geometries [1]. However, these experiments have been generally inconclusive, because they operated in the grid performance “saturation” regime, wherein the maximum symmetry is already achieved and any further increase in symmetry through addition of more wires does not cause significant improvement in the observed reaction rate.

Keywords

Quartz Argon Steam Paraffin Deuterium 

References

  1. 1.
    Wehmeyer AL, Radel RF, Kulcinski GL (2005) Optimizing neutron production rates from D–D fusion in an inertial electrostatic confinement device. Fusion Sci Technol 47:1260Google Scholar
  2. 2.
    Krupakar Murali S, Kulcinski GL, Santarius JF (2008) Study of ion flow dynamics in an inertial electrostatic confinement device through sequential grid construction. Phys Plasmas 15:122702CrossRefGoogle Scholar
  3. 3.
    Kulsrud RM, Furth HP, Valso EV, Goldhaber M (1982) Fusion reactor plasmas with polarized nuclei. Phys Rev Lett 49:1248CrossRefGoogle Scholar
  4. 4.
    Tamor S, Shuy GW, Liu KF (1982) Fusion reactions of polarized deuterons. Bull Am Phys Soc 27:922Google Scholar
  5. 5.
    Ashley RP, Kulcinski GL, Santarius JF, Krupakar Murali S, Piefer G, Cipiti BB, Radel R (2003) Recent progress in steady state fusion using D–3He. Fusion Sci Technol 44:559Google Scholar
  6. 6.
    Krupakar Murali S, Cipiti BB, Santarius JF, Kulcinski GL (2006) Study of fusion regimes in an inertial electrostatic confinement device using the new eclipse disk diagnostic. Phys Plasmas 13:053111CrossRefGoogle Scholar
  7. 7.
    Penning FM (1936) Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica (The Hague) 3:873Google Scholar
  8. 8.
    Cipiti BB (2004) Ph.D. thesis. Department of Engineering Physics, University of Wisconsin, MadisonGoogle Scholar
  9. 9.
    Farnsworth PJ (1966) Electric discharge device for producing interaction between nuclei. US Patent 3,258,402Google Scholar
  10. 10.
    Hirsch RL (1967) Inertial-electrostatic confinement of ionized fusion gases. J Appl Phys 38(11):4522–4534CrossRefGoogle Scholar
  11. 11.
    Krupakar Murali S, Santarius JF, Kulcinski GL (2012) Effects of the cathode grid wires on fusion proton measurements in inertial electrostatic confinement devices. IEEE Trans Plasma Sci 39(2):749–755CrossRefGoogle Scholar
  12. 12.
    Miley GH, Sved J (2000) The IEC star-mode fusion neutron source for NAA status and next step designs. Appl Radiat Isot 53:779–783CrossRefGoogle Scholar
  13. 13.
    Nadler JH (1992) Space-charge dynamics and neutron generation in an inertial-electrostatic confinement device. Ph.D. dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  14. 14.
    Thorson TA, Durst RD, Fonck RJ, Wainwright LP (1997) Convergence, electrostatic potential, and density measurements in a spherically convergent ion focus. Phys Plasmas 4(1):4–15CrossRefGoogle Scholar
  15. 15.
    Thorson TA (1996) Ion flow and fusion reactivity characterization of a spherically convergent ion focus. Ph.D. dissertation, University of Wisconsin, MadisonGoogle Scholar
  16. 16.
    Khachan J (2003) Spatial distribution of ion energies in an inertial electrostatic confinement device. Phys Plasmas 10(3):596–599CrossRefGoogle Scholar
  17. 17.
    Yoshikawa K, Takiyama K, Koyama T, Taruya K, Masuda K, Yamamoto Y, Toku T, Kii T, Hashimoto H, Inoue N, Ohnishi M, Horiike H (2001) Measurement of strongly localized potential well profiles in an inertial-electrostatic fusion neutron source. Nucl Fusion 41(6):717–720CrossRefGoogle Scholar
  18. 18.
    Swanson DA, Cherrington BE, Verdeyen JT (1973) Potential well structure in an inertial electrostatic plasma confinement device. Phys Fluids 16(11):1939–1945CrossRefGoogle Scholar
  19. 19.
    Meeker DJ, Verdeyen JT, Cherrington BE (1973) Measurement of electron density in a cylindrical inertial electrostatic plasma confinement device. J Appl Phys 44(12):5347–5355CrossRefGoogle Scholar
  20. 20.
    Satsangi AJ (1996) Light intensity measurements of an inertial electrostatic confinement fusion plasma. M.S. thesis, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-ChampaignGoogle Scholar
  21. 21.
    Gu Y, Miley GH (2000) Experimental study of potential structure in a spherical IEC fusion device. IEEE Trans Plasma Sci 28(1):331–346CrossRefGoogle Scholar
  22. 22.
    Matsuura H, Takaki T, Nakao Y, Kudo K (2001) Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Fusion Technol 39:1167Google Scholar
  23. 23.
    Krupakar Murali S, Santarius JF, Kulcinski GL (2011) Effects of the cathode grid wires on fusion proton measurements in inertial-electrostatic confinement devices. IEEE Trans Plasma Sci 39(2):749–755Google Scholar
  24. 24.
    Donovan DC (2011) Spatial profiling using a time of flight diagnostic and applications of deuterium–deuterium fusion in inertial electrostatic confinement fusion devices. Ph.D. thesis, Department of Engineering Physics, University of Wisconsin, MadisonGoogle Scholar
  25. 25.
    Krupakar Murali S, Santarius JF, Kulcinski GL (2010) Proton detector calibration in a gridded inertial electrostatic confinement device. IEEE Trans Plasma Sci 38(11):3116–3127CrossRefGoogle Scholar
  26. 26.
    Cipiti BB (2004) Ph.D. thesis, Department of Engineering Physics, University of WisconsinGoogle Scholar
  27. 27.
    Krishnamurthy A (2012) Development and characterization of an inertial electrostatic confinement thruster. M.S. thesis, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-ChampaignGoogle Scholar
  28. 28.
    Paschen F (1889) Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann Phys 273(5):69–75CrossRefGoogle Scholar
  29. 29.
    Hochberg TA (1992) Characterization and modeling of the gas discharge in a SFID neutron generator. M.S. thesis, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-ChampaignGoogle Scholar
  30. 30.
    Osawa H, Makino K, Nakagawa Y, Ohnishi M (2012) Development of compact inertial electrostatic confinement fusion device. In: 14th US-Japan workshop on IEC, University of MarylandGoogle Scholar
  31. 31.
    Osawa H, Tabata T, Ohnishi M (2005) Numerical study on glow discharge of IEC fusion. Fusion Sci Technol 47(4)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • George H. Miley
    • 1
  • S. Krupakar Murali
    • 2
  1. 1.Fusion Studies LabUniversity of IllinoisUrbanaUSA
  2. 2.Department of Electronics and Communication EngineeringJ. K. K. M. College of TechnologyErode DistrictIndia

Personalised recommendations