Skip to main content

Mining Genetic Diversity of Sorghum as a Bioenergy Feedstock

  • Chapter
  • First Online:

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

Sorghum is a drought-tolerant rainfed crop that requires about 30 % less nitrogen fertilizer than corn to produce equal amount of ethanol per acre under non-irrigated conditions. Excellent genetic and genomic resources exist for improvement of sorghum as a bioenergy source. We expect a huge impact on biomass yield, quality, and conversion efficiency with appropriate plant breeding and biotechnology tools in order to develop energy sorghum germplasm that allows highly efficient production of biofuel. The outlined improvement should produce benefits that include: (1) genetic improvement of a biomass crop with significantly reduced overall cost of biomass-to-ethanol conversion; (2) selection of a reliable bioenergy feedstock that is drought tolerant, inexpensive to grow, environmentally friendly and cultivated in nearly all temperate and tropical climate regions; (3) expansion of the production area for bioenergy crops by developing cold tolerance germplasm and hybrids and by offering both annual and perennial sweet sorghum types; and (4) reduction in cell wall lignin for improved efficiency in production of biofuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson IC, Buxton DB, Hallam A, Hunter E (1995) Biomass production and ethanol potential from sweet sorghum. Leopold Center for Sust Agric, Iowa State Univ Ames, IA 4:97–101

    Google Scholar 

  • Barbanti L, Grandi S, Vecchi A, Venturi G (2006) Sweet and fiber sorghum (Sorghum bicolor (L) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. Europ J Agron 25:30–39

    Article  Google Scholar 

  • Bean B, Bronson KF, Schwartz R, Malapati A (2008) Nitrogen requirements of sorghums for biofuel feedstock production in the southern high plains. In: Proceedings of great plains soil fertility conference, Denver, CO. 4–5 March 2008. Intern Plant Nutrition Inst, Norcross, GA, pp 15–18

    Google Scholar 

  • Bennett AC, Anex RP (2009) Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresources Technol 100:1595–1607

    Article  CAS  Google Scholar 

  • Bhattacharya A, Rice N, Shapter FM, Norton SL, Henry RJ (2011) Sorghum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources (cereals). Springer, Berlin, pp 397–406

    Chapter  Google Scholar 

  • Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin Y-R, Liu S-C, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang Y-W, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Broadhead DM, Freeman KC (1980) Stalk and sugar yield of sweet sorghum as affected by spacing. Agron J 72:523–524

    Article  Google Scholar 

  • Buchanan C, Lim S, Salzman RA, Kagiampakis I, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  PubMed  CAS  Google Scholar 

  • Carter PR, Barnett KH (1987) Corn-hybrid performance under conventional and no-tillage systems after thinning. Agronomy J 79:919–926

    Article  Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: concurrent studies with simple sequence repeats (SSRs). Theor Appl Genet 111:23–30

    Article  PubMed  CAS  Google Scholar 

  • Chiaramonti D, Grassi G, Nardi A, Grimm HP (2004) ECHI-T: large bio-ethanol project from sweet sorghum in China and Italy. Energia Trasporti Agricoltura, Florence

    Google Scholar 

  • DeHaan LR, Van Tassel DL, Cox TS (2005) Perennial grain crops: a synthesis of ecology and plant breeding. Renewable Agric Food Syst 20:5–14

    Article  Google Scholar 

  • Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnerg Res 2:153–164

    Article  Google Scholar 

  • Dje Y, Heuertz M, Lefebvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Article  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Wiley, New York

    Google Scholar 

  • Dweikat I (2005) A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnsongrass weed Sorghum halepense. Molec Breed 16:93–101

    Article  Google Scholar 

  • Dweikat I, Weil CF, Moose SP, Kochian L, Mosier NS, Ileleji KE, Brown PJ, Peer WA, Murphy AS, Taheripour F, McCann MC, Carpita NC (2012) Envisioning the transition to a next-generation biofuels industry in the midwest. Biofuels Bioprod Bioref 6:376–386

    Article  CAS  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  PubMed  CAS  Google Scholar 

  • EIA (2011) Annual energy outlook 2011 with projections to 2035. Energy Information Administration, Washington, D.C

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  Google Scholar 

  • Epplin FM (1996) Cost to produce and deliver switchgrass biomass to an ethanol conversion facility in the southern plains of the U.S. Biomass Bioenergy 11:459–467

    Article  Google Scholar 

  • FAO (2011) http://faostat.fao.org/site/339/default.aspx (last time accessed: 06/28/2013)

  • Ferraris R, Charles-Edwards DA (1986) A comparative analysis of the growth of sweet and forage sorghum crops II. Accumulation of soluble carbohydrates and nitrogen. Aust J Agric Res 37:513–552

    Article  CAS  Google Scholar 

  • Geng S, Hills FJ, Johanson SS, Sah RN (1989) Potential yields and on-farm ethanol cost of corn, sweet sorghum, fodder beet and sugarbeet. J Agron Crop Sci 162:21–29

    Article  Google Scholar 

  • Glover J (2005) The necessity and possibility of perennial grain crops. Renewable Agric Food Syst 20:1–4

    Article  Google Scholar 

  • Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  CAS  Google Scholar 

  • Graham R, English B, Noon C (2000) GIS-based modeling system for evaluating the cost of delivered energy crop feedstock. Biomass Bioenergy 18:309–329

    Article  Google Scholar 

  • Graven LM, Carter PR (1991) Seed quality effect on corn performance under conventional and no-tillage systems. J Prod Agric 4:366–373

    Article  Google Scholar 

  • Gunaratna N (2002) Early season cold tolerance in sorghum. MS thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Haussmann BIG, Hess DE, Seetharama N, Welz HG, Geiger HH (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637

    Article  PubMed  CAS  Google Scholar 

  • Hennigh D, Al-Khatib K, Tuinstra M (2010) Response of acetolactate synthase-resistant grain sorghum to nicosulfuron plus rimsulfuron. Weed Technol 24:411–415

    Article  CAS  Google Scholar 

  • Henry R (2010) Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J 8:288–293

    Article  PubMed  CAS  Google Scholar 

  • Herbst BK (2003) The feasibility of ethanol production in Texas. MS Thesis, Texas A&M University

    Google Scholar 

  • Hons FM, Moresco RF, Wiedenfeld RP, Cothren JT (1986) Applied nitrogen and phosphorus effects on yield and nutrient uptake by high-energy sorghum produced for grain and biomass. Agron J 76:1010–1069

    Google Scholar 

  • Hopkinson CS Jr, Day JW Jr (1980) Net energy analysis of alcohol production from sugarcane. Science 207:302–304

    Article  PubMed  Google Scholar 

  • Hunter EL (1994) Development, sugar yield, and ethanol potential of sweet sorghum. MS thesis, Iowa State University, Ames, Iowa

    Google Scholar 

  • Hunter EL, Anderson IC (1997) Sweet sorghum. Hortic Rev 21:73–104

    Google Scholar 

  • Jackson DR, Arthur MF, Davis M, Kresovich S, Lawhon WT, Lipinsky ES, Price M, Rudolph A (1980) Research report on development of sweet sorghum as an energy crop. Volume 1: Agricultural task

    Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Kuepper G (1992) Sweet sorghum: production and processing. Kerr Center for Sustainable Agriculture, Poteau

    Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  PubMed  CAS  Google Scholar 

  • Liska AJ, Cassman KG (2008) Towards standardization of life-cycle metrics for biofuels: greenhouse gas emissions mitigation and net energy yield. J Bio-based Mater Bioenergy 2:187–203

    Article  Google Scholar 

  • Lueschen WE, Putnam BK, Kanne BK, Hoverstad TR (1991) Agronomic practices for production of ethanol from sweet sorghum. J Prod Agric 4:619–625

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Mapemba LD, Epplin FM, Taliaferro CM, Huhnke RL (2007) Biorefinery feedstock production on conservation reserve program land. Rev Agric Econ 29:227–246

    Article  Google Scholar 

  • Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    Article  PubMed  CAS  Google Scholar 

  • Martin PM, Kelleher FM (1984) Effects of row spacing and plant population on sweet sorghum yield. Aust J Exp Agric Husb 24:386–390

    Article  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Menz MA, Klein RR, Unruh NC, Rooney WL, Klein PE, Mullet JE (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44:1236–1244

    Article  CAS  Google Scholar 

  • Miller FR, McBee GG (1993) Genetics and management of physiologic systems of sorghum for biomass production. Biomass Bioenergy 5:41–49

    Article  Google Scholar 

  • Murray D (2005) Ethanol’s potential: looking beyond corn. Earth Policy Institute, Washington, D.C. http://www.xmarks.com/site/www.earth-policy.org/Updates/2005/Update49.htm. Last accessed 06/28/2013

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62

    Article  CAS  Google Scholar 

  • Outlaw JL, Ribera LA, Richardson JW, da Silva J, Bryant H, Klose SL (2007) Economics of sugar-based ethanol production and related policy issues. J Agric Appl Econ 39:357–363

    Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Pendleton J, Brown CM, Weibel RO (1965) Effect of reflected light on small grain yields. Crop Sci 5:373

    Article  Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DOE/GO-102995-2135, ORNL/TM-2005/66. Oak Ridge National Laboratory, Oak Ridge, Tenn. http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. Last accessed: 06/28/2013

  • Pinthus MJ, Rosenblum J (1961) Germination and seedling emergence of sorghum at low temperatures. Crop Sci 1:293–296

    Article  Google Scholar 

  • Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor x S. halepense hybrids. Can J Bot 72:468–474

    Article  Google Scholar 

  • Porter KS, Axtell JD, Lechtenberg VL, Colenbrandu VF (1978) Phenotype fiber composition and in vitro dry matter disappearance of chemically induced brown-midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  • Pratt LH, Liang C, Shah M, Sun F, Wang HM, Reid SP, Gingle AR, Paterson AH, Wing R, Dean R, Klein R, Nguyen HT, Ma HM, Zhao X, Morishige DT, Mullet JE, Cordonnier-Pratt MM (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139:869–884

    Article  PubMed  Google Scholar 

  • Propheter JL, Wang D, Wu X, Staggenborg SA (2010) Performance of annual and perennial biofuel crops: yield during the first two years. Agron J 102:806–814

    Article  Google Scholar 

  • Reddy BVS, Kumar AA, Ramesh S (2007) Sweet sorghum: a water saving bio-energy crop. In: International conference on linkages between energy and water management for agriculture in developing countries, IWMI, ICRISAT, Hyderabad, India

    Google Scholar 

  • Reddy BVS, Layaoen H, Dar WD, Rao PS, Eusebio JE (2011) Sweet sorghum in the Philippines: status and future. ICRISAT, Patancheru 502 324, Andhra Pradesh, India

    Google Scholar 

  • Renewable Energy World (2000) Bioethanol-industrial world perspective. Website www.jxj.com/magsandj/rew/200_03/bioethanol.html

  • Ribera LA, Outlaw JL, Richardson JW, Silva JD, Bryant H (2007) Mitigating the fuel and feed effects of increased ethanol production utilizing sugarcane. St. Louis, MO, Farm Foundation Conference

    Google Scholar 

  • Ricaud R, Arceneaux A (1990) Sweet sorghum research on biomass and sugar production in 1990. Manuscript report from the St. Gabriel Experiment Station

    Google Scholar 

  • Ricaud RB, Cochran B, Arceneaux A, Newton G (1979) Sweet sorghum for sugar and biomass production in Louisiana. Manuscript report from the St. Gabriel Experiment Station

    Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioprod Biorefin 1:147–157

    Article  CAS  Google Scholar 

  • Salassi ME (2007) The economic feasibility of ethanol production from sugar crops. Louisiana Agric 50:1

    Google Scholar 

  • Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368

    Article  PubMed  CAS  Google Scholar 

  • Schaffert RE, Borgonovi RA, Casela CR (1986) Metodologia usada para desenvolver novas cultivares de sorgo sacarino. Relatorio Tecnico Anual do Centro Nacional de Pesquisa de Milho e Sorgo 1980–1984. Sete Lagoas, Minas Gerais, EMBRAPA/CNPMS, Brazil

    Google Scholar 

  • Shapouri H, Salassi M, Fairbanks JN (2006) The economic feasibility of ethanol production from sugar in the United States. USDA-OEPNA and Louisiana State University

    Google Scholar 

  • Singh SP (1985) Sources of cold tolerance in grain sorghum. Can J Plant Sci 65:251–257

    Article  Google Scholar 

  • Smith GA, Buxton DR (1993) Temperate zone sweet sorghum ethanol production potential. Bioresour Technol 43:71–75

    Article  Google Scholar 

  • Smith MS, Frye WW, Varco JJ (1987) Legume winter cover crops. Adv Soil Sci 7:95–139

    Article  Google Scholar 

  • Soltani A, Almodares A (1994) Evaluation of the investments in sugar beet and sweet sorghum production. In: National convention of sugar production from agriculture products, 13–16 Mar 1994, Shahid Chamran University, Ahwaz, Iran

    Google Scholar 

  • Somerville C (2007) Biofuels. Curr Biol 17:R115–R119

    Article  PubMed  CAS  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, Mcintyre CL (1998) Construction of a genetic map in a sorghum RIL population using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736

    Article  CAS  Google Scholar 

  • Tuinstra MR, Al-Khatib K (2007) New herbicide tolerance traits in sorghum. In: Proceedings of the 2007 corn, sorghum, and soybean seed research conference and seed expo, Chicago, IL. 5–7 Dec 2007. Am Seed Trade Assoc, Alexandria, VA

    Google Scholar 

  • Tuinstra MR, Soumana S, Al-Khatib K, Kapran I, Toure A, van Ast A, Bastiaans L, Ochanda N, Salami I, Kayentao M, Dembele S (2009) Efficacy of herbicide seed treatments for controlling striga infestation of sorghum. Crop Sci 49:923–929

    Article  CAS  Google Scholar 

  • Undersander DJ, Lueschen WE, Smith LH, Kaminski AR, Doll JD, Kelling KA, Oplinger ES (1990) Alternative field crops manual: sorghum syrup. http://www.hort.purdue.edu/newcrop/afcm/syrup.html. Last accessed: 06/28/2013

  • US DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. Report from the December 2005 workshop, DOE/SC-0095. U.S. Department of Energy Office of Science. http://www.genomicscience.energy.gov/biofuels/. Last accessed: 06/28/2013

  • Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119

    Article  PubMed  Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153

    Article  Google Scholar 

  • Vietor DM, Miller FR (1990) Assimilation, partitioning and nonstructural carbohydrates in sweet compared with grain sorghum. Crop Sci 30:1109–1115

    Article  CAS  Google Scholar 

  • Wiendenfeld R (1984) Nutrient requirement and use efficiency by sweet sorghum. Energy Agr 3:49–59

    Article  Google Scholar 

  • Worley JW, Cundiff JS (1991) System analysis of sweet sorghum harvest for ethanol production in the Piedmont. Trans Amer Soc Agr Eng 34:539–547

    Google Scholar 

  • Wu X, Staggenborg S, Propheter JL, Rooney WL, Yu J, Wang D (2008) Features and fermentation performance of sweet sorghum juice after harvest. ASABE Paper No. 080037. ASABE, St Joseph, MI

    Google Scholar 

  • Xin Z, Wang ML (2011) Sorghum as a versatile feedstock for bioenergy production. Biofuels 2:577–588

    Article  CAS  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  Google Scholar 

  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res 111:55–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Dweikat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Damasceno, C.M.B., Schaffert, R.E., Dweikat, I. (2014). Mining Genetic Diversity of Sorghum as a Bioenergy Feedstock. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_6

Download citation

Publish with us

Policies and ethics