Skip to main content

Regional Gene Pools for Restoration, Conservation, and Genetic Improvement of Prairie Grasses

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

Switchgrass (Panicum virgatum), big bluestem (Andropogon gerardii), and Indiangrass (Sorghastrum nutans) are native warm-season grasses that have been identified as potential cellulosic bioenergy feedstock crops due to their potential for high yields, perennial life habit, and nutrient use efficiency. This chapter outlines the role that improved cultivars and unimproved locally collected ecotypes can play in meeting agronomic and conservation goals. Improved cultivars grown for use as a bioenergy feedstock will be established in areas where introgression will occur with native populations. The concerns regarding the introgression of transgenes or non-adaptive alleles are outlined along with several avenues for mitigating these concerns. The agronomic and breeding history of each species is reviewed, as well as their importance in the conservation and restoration efforts of the prairie ecosystems of North America. We argue that both improved and locally collected ecotypes can coexist on the landscape and help to jumpstart the shift to a bioenergy based economy that provides sufficient biomass to meet cellulosic bioenergy goals, restore native ecosystems, and provide an array of regulating, cultural, and supporting ecosystem services while increasing the sustainability of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–691

    Article  PubMed  Google Scholar 

  • Ahrens C, Ecker G, Auer C (2011) The intersection of ecological risk assessment and plant communities: an analysis of Agrostis and Panicum species in the northeastern U.S. Plant Ecol 212:1629–1642

    Article  Google Scholar 

  • Anderson R (2009) History and progress of ecological restoration in tallgrass prairie. In: Taylor C, Taft J, Warwick C (eds) INHS special publication 30: canaries in the catbird seat. University of Illinois, Champaign-Urbana, pp 217–228

    Google Scholar 

  • Anderson W, Casler MD, Baldwin B (2008) Improvement of perennial forage species as feedstock for bioenergy. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 309–346

    Google Scholar 

  • Bagavathiannan M, Spök A, Van Acker R (2010) Commercialization of perennial GE crops: looming challenges for regulatory frameworks. J Agric Environ Ethics 24:227–242

    Article  Google Scholar 

  • Barkworth M, Capels K, Long S, Piep M (2003) Flora of North America, vol. 25. Magnoliophyta: Commelinidae (in part). http://herbarium.usu.edu/webmanual

  • Beckman JJ, Moser LE, Kubik K, Waller SS (1993) Big bluestem and switchgrass establishment as influenced by seed priming. Agron J 85:199–202

    Article  Google Scholar 

  • Belanger FC, Meagher TR, Day PR et al (2003) Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci 43:240–246

    Article  Google Scholar 

  • Boody G, Vondracek B, Andow DA et al (2005) Multifunctional agriculture in the United States. Bioscience 55:27–38

    Article  Google Scholar 

  • Burns JC, Godshalk EB, Timothy DH (2010) Registration of “colony” lowland switchgrass. J Plant Registr 4:189–194

    Article  Google Scholar 

  • Buxton DR (1996) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Technol 59:37–49.

    Google Scholar 

  • Byrne M, Stone L (2011) The need for “duty of care” when introducing new crops for sustainable agriculture. Curr Opin Environ Sustain 3:50–54

    Article  Google Scholar 

  • Byrt CS, Grof CPL, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    Article  PubMed  CAS  Google Scholar 

  • Casler MD (1997) Breeding for improved forage quality: potentials and problems. In: Proceedings of the 18th international grassland congress. Winnipeg, Manitoba and Saskatoon, Saskatchewan (Canada), pp 323–330

    Google Scholar 

  • Casler MD (2005) Ecotypic variation among switchgrass populations from the northern USA. Crop Sci 398:388–398

    Article  Google Scholar 

  • Casler MD (2010) Changes in mean and genetic variance during two cycles of within-family selection in switchgrass. Bioenergy Res 3:47–54

    Article  Google Scholar 

  • Casler MD (2012) Switchgrass breeding, genetics, and genomics. In: Monti A (ed) Switchgrass: a valuable biomass crop for energy. Springer, London, pp 29–54

    Google Scholar 

  • Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Gen 104:127–131

    Article  CAS  Google Scholar 

  • Casler MD, Vogel K, Taliaferro C (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  • Chamberlain SK, Paine LK, Harrison JL, Jackson RD (2012) Tradeoffs in performance of native warm-season grass cultivars and locally harvested seed managed for wildlife habitat or livestock production. Agron J 104:1383

    Article  Google Scholar 

  • Clark FE (1977) Internal cycling of nitrogen in shortgrass prairie. Ecology 58:1322–1333

    Article  CAS  Google Scholar 

  • Collins Johnson N, Wilson GWT, Bowker MA et al (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci USA 107:2093–2098

    Article  Google Scholar 

  • Costich DE, Friebe B, Sheehan MJ et al (2010) Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 3:130–141

    Article  Google Scholar 

  • Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44:443–448

    Google Scholar 

  • Eberhart SA, Russell WA (1966) Stability parameters for comparing varieties. Crop Sci 6:36–40

    Article  Google Scholar 

  • Emal J, Conard E (1973) Seed dormancy and germination in Indiangrass as affected by light, chilling, and certain chemical treatments. Agron J 65:383–385

    Article  CAS  Google Scholar 

  • Epstein H, Lauenroth W, Burke I, Coffin D (1998) Regional productivities of plant species in the Great Plains of the United States. Plant Ecol 134:173–195

    Article  Google Scholar 

  • Fu C, Mielenz JR, Xiao X et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    Article  PubMed  CAS  Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agric Ecosys Environ 142:111–128

    Article  Google Scholar 

  • Ge Y, Fu C, Bhandari H et al (2011) Pollen viability and longevity of switchgrass. Crop Sci 51:2698–2705

    Article  Google Scholar 

  • Gould FW (1975) The grasses of texas. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Gustafson DJ, Gibson DJ, Nickrent DL (2004) Conservation genetics of two co-dominant grass species in an endangered grassland ecosystem. J Appl Ecol 41:389–397

    Article  CAS  Google Scholar 

  • Hall K, George J, Riedl R (1982) Herbage dry matter yields of switchgrass, big bluestem, and indiangrass with N fertilization. Agron J 74:47–51

    Article  Google Scholar 

  • Heaton EA, Flavell RB, Mascia PN et al (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19:202–209

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AA, Vogel KP, Moore KJ (1993) Predicted and realized gains from selection for in vitro dry matter digestibility and forage yield in switchgrass. Crop Sci 33:253–258

    Article  Google Scholar 

  • Hull S, Arntzen J, Bleser C et al (2011) Wisconsin sustainable planting and harvest guidelines for nonforest biomass. Madison, WI

    Google Scholar 

  • Jakubowski AR, Casler MD, Jackson RD (2010) The benefits of harvesting wetland invaders for cellulosic biofuel: an ecosystem services perspective. Restor Ecol 18:789–795

    Article  Google Scholar 

  • Jakubowski AR, Casler MD, Jackson RD (2011) Has selection for improved agronomic traits made reed canarygrass invasive? PLoS ONE 6:e25757

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends in Plant Science 14:563–573

    Google Scholar 

  • Jung H, Vogel K (1992) Lignification of switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) plant parts during maturation and its effect on fibre degradability. J Sci Food Agric 59:169–176

    Article  CAS  Google Scholar 

  • Kausch A, Hague J, Oliver M, Li Y (2010) Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels 1:163–176

    Article  CAS  Google Scholar 

  • Keeler KH (1992) Local polyploid variation in the native prairie grass Andropogon gerardii. Amer J Bot 79:1229–1232

    Article  Google Scholar 

  • Klironomos J (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kwit C, Stewart C (2012) Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock. Ecol Appl 22:3–7

    Article  PubMed  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7:42–50

    Google Scholar 

  • Lonsdale W, FitzGibbon F (2011) The known unknowns—managing the invasion risk from biofuels. Curr Opin Environ Sustain 3:31–35

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) How local is local? A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Mclaughlin S, Bouton J, Bransby D, et al. (1999) Developing switchgrass as a new crop. In: Janick J (ed) Proceedings fourth national new crops symposium. ASHS Press, Alexandria, VA, pp 282–299

    Google Scholar 

  • McMillan C (1964) Ecotypid differentiation within four North American prairie grasses. I. Morphological variation within transplanted community fractions. Amer J Bot 51:1119–1128

    Article  Google Scholar 

  • McMillan C (1965) Ecotypic differentiation within four North American prairie grasses. II. Behavioral variation within transplanted community fractions. Amer J Bot 52:55–65

    Article  Google Scholar 

  • Merigliano MF, Lesica P (1998) The native status of reed canarygrass (Phalaris arundinacea L.) in the Inland Northwest. USA. Nat Areas J 18:223–230

    Google Scholar 

  • Mitchell RB, Vogel KP, Klopfenstein TJ et al (2005) Grazing evaluation of big bluestems bred for improved forage yield and digestibility. Crop Sci 45:2288–2292

    Article  Google Scholar 

  • Norrmann G, Quarin C, Keeler K (1997) Evolutionary implications of meiotic chromosome behavior, reproductive biology, and hybridization in 6x and 9x cytotypes of Andropogon gerardii (Poaceae). Amer J Bot 84:201–207

    Article  CAS  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  • Parrish DJ, Casler MD, Monti A (2012) The evolution of switchgrass as an energy crop. In: Monti A (ed) Switchgrass. Springer, London, pp 1–28

    Chapter  Google Scholar 

  • Perrin R, Vogel K, Schmer M, Mitchell R (2008) Farm-scale production cost of switchgrass for biomass. Bioenergy Res 1:91–97

    Article  Google Scholar 

  • Perry L, Baltensperger D (1979) Leaf and stem yields and forage quality of three N-fertilized warm-season grasses. Agron J 71:355–358

    Article  Google Scholar 

  • Price DL, Salon PR, Casler MD (2012) Big bluestem gene pools in the Central and Northeastern United States. Crop Sci 52:189–200

    Article  Google Scholar 

  • Raghu S, Anderson RC, Daehler CC et al (2006) Adding biofuels to the invasive species fire. Science 313:1742

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Vogel KKP (1982) Chromosome numbers of released cultivars of switchgrass, indiangrass, big bluestem, and sand bluestem. Crop Sci 22:1082–1083

    Article  Google Scholar 

  • Rose LW, Das MK, Taliaferro CM (2008) Estimation of genetic variability and heritability for biofuel feedstock yield in several populations of switchgrass. Ann Appl Biol 152:11–17

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol System 32:305–332

    Article  Google Scholar 

  • Salehi H, Ransom CB, Oraby HF, et al. (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162:711–717

    Google Scholar 

  • Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418–421

    Article  Google Scholar 

  • Sanderson MA, Schnabel RR, Curran WS et al (2004) Switchgrass and big bluestem hay, biomass, and seed yield response to fire and glyphosate treatment. Agron J 96:1688–1692

    Article  Google Scholar 

  • Selbo SM, Snow AA (2005) Flowering phenology and genetic similarity among local and recently introduced populations of Andropogon gerardii in Ohio. Restor Ecol 13:441–447

    Article  Google Scholar 

  • Simberloff D, Gotelli N (1984) Effects of insularisation on plant species richness in the prairie-forest ecotone. Biol Conserv 29:27–46

    Article  Google Scholar 

  • Simmonds NW (1991) Selection for local adaptation in a plant-breeding program. Theor Appl Genet 82:363–367

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Schweitzer JA, Turk P et al (2012) Soil-mediated local adaptation alters seedling survival and performance. Plant Soil 352:243–251

    Article  CAS  Google Scholar 

  • Song G, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell, Tiss Org Cult 108:445–453

    Article  CAS  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  PubMed  CAS  Google Scholar 

  • Stubbendieck J, Hatch S, Butterfield C (1991) North American range plants. University of Nebraska Press, Lincoln, NE

    Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Ventura S, Hull S, Jackson R et al (2012) Guidelines for sustainable planting and harvest of nonforest biomass in Wisconsin. J Soil Water Conserv 67:17A–20A

    Article  Google Scholar 

  • Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164

    Article  Google Scholar 

  • Vogel K, Gorz H, Haskins F (1981) Heritability estimates for forage yield, in vitro dry matter digestibility, crude protein, and heading date in indiangrass. Crop Sci 21:35–38

    Article  Google Scholar 

  • Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Range Ecol Man 58:315–319

    Article  Google Scholar 

  • Vogel KP, Mitchell RB, Klopfenstein TJ, Anderson BE (2006) Registration of “Goldmine” big bluestem. Crop Sci 46:2314–2315

    Article  Google Scholar 

  • Vogel KP, Mitchell RB, Gorz HJ et al (2010) Registration of “Warrior”, “Scout”, and “Chief” Indiangrass. J Plant Registr 4:115

    Article  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann New York Acad Sci 1168:72–99

    Article  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    Article  PubMed  CAS  Google Scholar 

  • Weimer PJ, Springer TL (2007) Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments. Biores Technol 98:1615–1621

    Article  CAS  Google Scholar 

  • Whitham TG, Gehring CA, Lamit LJ et al (2012) Community specificity: life and afterlife effects of genes. Trends Plant Sci 17:271–281

    Article  PubMed  CAS  Google Scholar 

  • Wilsey BJ (2010) Productivity and subordinate species response to dominant grass species and seed source during restoration. Restor Ecol 18:628–637

    Article  Google Scholar 

  • Wu Y, Taliaferro C (2009) Switchgrass cultivar, cv “Cimarron.” US Patent Number: US 2009/0300977 A1

    Google Scholar 

  • Wullschleger SD, Davis EB, Borsuk ME et al (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 102:1158–1168

    Article  Google Scholar 

  • Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106

    Article  CAS  Google Scholar 

  • Zalapa JE, Price DL, Kaeppler SM et al (2011) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122:805–817

    Article  PubMed  CAS  Google Scholar 

  • Zapiola M, Mallory-Smith C, Thompson J, et al. (2007) Gene escape from glyphosate-resistant creeping bentgrass fields: past, present, and future. In: Proceedings of the western society of weed science, p 18

    Google Scholar 

  • Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494

    Article  Google Scholar 

  • Zhang Y, Zalapa JE, Jakubowski AR et al (2011a) Natural hybrids and gene flow between upland and lowland switchgrass. Crop Sci 51:2626–2641

    Article  Google Scholar 

  • Zhang Y, Zalapa JE, Jakubowski AR et al (2011b) Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139:933–948

    Article  PubMed  Google Scholar 

  • Zhang K, Johnson L, Nelson R et al (2012) Chemical and elemental composition of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains. Industr Crops Prod 40:210–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Jakubowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jakubowski, A.R., Casler, M.D. (2014). Regional Gene Pools for Restoration, Conservation, and Genetic Improvement of Prairie Grasses. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_5

Download citation

Publish with us

Policies and ethics