Skip to main content

Catalytic Oxidation of Lignin for the Production of Low Molecular Weight Aromatics

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

  • 2452 Accesses

Abstract

Lignin offers a number of attractive features as a starting material for chemical production, and the only large scale source of aromatic moieties in nature. It is highly abundant, comprising 15–25 wt% of lignocellulosic feedstocks, such as agricultural materials or forest resources, making it the second most available source of renewable carbon after cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88:1024–1032

    Article  CAS  Google Scholar 

  • Auhorn WJ, Niemela K (2007) Process chemicals for the production of chemical pulp. Prof Papermaking 2:10–20

    Google Scholar 

  • Barreca AM, Fabbrini M, Galli C, Gentili P, Ljunggren S (2003) Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Mol Catal B 26:105–110

    Article  CAS  Google Scholar 

  • Bjorsvik HR (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Proc Res Devel 3:330–340

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Bohlin C, Persson P, Gorton L, Lundquist K, Jonsson LF (2005) Product profiles in enzymic and non-enzymic oxidations of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)2-(2-methoxyphenoxy)-1,3-propanediol. J Mol Catal B 35:100–107

    Article  CAS  Google Scholar 

  • Bosch E, Rathore R, Kochi JK (1994) Novel catalysis of hydroquinone autoxidation with nitrogen-oxides. J Org Chem 59:2529–2536

    Article  CAS  Google Scholar 

  • Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-Schiff base complex-catalyzed oxidation of para-substituted phenolics—preparation of benzoquinones. J Org Chem 60:2398–2404

    Article  CAS  Google Scholar 

  • Bozell JJ, Hoberg JO, Dimmel DR (1998) Catalytic oxidation of para-substituted phenols with nitrogen dioxide and oxygen. Tetrahedron Lett 39:2261–2264

    Article  CAS  Google Scholar 

  • Bozell JJ, Holladay JE, Johnson D, White JF (2007) Top value added chemicals from biomass. Volume II—results of screening for potential candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, Richland, WA

    Google Scholar 

  • Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011a) Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208

    Article  CAS  Google Scholar 

  • Bozell JJ, O’Lenick CJ, Warwick S (2011b) Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. J Agric Food Chem 59:9232–9242

    Article  PubMed  CAS  Google Scholar 

  • Busch DH (1988) Synthetic dioxygen carriers for dioxygen transport. In: Martell AE, Sawyer DT (eds) Oxygen complexes and oxygen activation by transition metals. Plenum, New York

    Google Scholar 

  • Cedeno D, Bozell JJ (2012) Catalytic oxidation of para-substituted phenols with cobalt-Schiff base complexes/O2-selective conversion of syringyl and guaiacyl lignin models to benzoquinones. Tetrahedron Lett 53:2380–2383

    Article  CAS  Google Scholar 

  • Collinson SR, Thielemans W (2010) The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coord Chem Rev 254:1854–1870

    Article  CAS  Google Scholar 

  • Creighton RHJ, McCarthy JL, Hibbert H (1941) Aromatic aldehydes from spruce and maple woods. J Am Chem Soc 63:312

    Article  CAS  Google Scholar 

  • Crestini C, Jurasek L, Argyropoulos DS (2003) On the mechanism of the laccase-mediator system in the oxidation of lignin. Chem Eur J 9:5371–5378

    Article  PubMed  CAS  Google Scholar 

  • Crestini C, Pastorini A, Tagliatesta P (2004) Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J Mol Catal A 208:195–202

    Article  CAS  Google Scholar 

  • Crestini C, Pro P, Neri V, Saladino R (2005) Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Biorg Med Chem 13:2569–2578

    Article  CAS  Google Scholar 

  • Crestini C, Caponi MC, Argyropoulos DS, Saladino R (2006) Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Biorg Med Chem 14:5292–5302

    Article  CAS  Google Scholar 

  • Cui F, Dolphin D (1995) Iron porphyrin catalyzed oxidation of lignin model compounds: Oxidation of phenylpropane and phenylpropene model compounds. Can J Chem 73:2153–2157

    Article  CAS  Google Scholar 

  • da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87:1276–1292

    Article  Google Scholar 

  • Dence CW, Reeve DW (1996) Pulp bleaching—principles and practice. TAPPI, Atlanta

    Google Scholar 

  • Dicosimo R, Szabo HC (1988) Oxidation of lignin model compounds using single-electron-transfer catalysts. J Org Chem 53:1673–1679

    Article  CAS  Google Scholar 

  • Dimmel DR, Bozell JJ (1991) Pulping catalysts from lignin. Tappi J 74:239–241

    CAS  Google Scholar 

  • Dimmel DR, Karim MR, Savidakis MC, Bozell JJ (1996) Pulping catalysts from lignin. 5. Nitrogen dioxide oxidation of lignin models to benzoquinones. J Wood Chem Technol 16:169–189

    Article  CAS  Google Scholar 

  • Dimmel DR, Althen E, Savidakis M, Courchene C, Bozell JJ (1999) New quinone-based pulping catalysts. Tappi J 82:83–89

    CAS  Google Scholar 

  • Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M (2005) Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol 37:340–346

    Article  CAS  Google Scholar 

  • Evtuguin DV, Daniel AID, Silvestre AJD, Amado FML, Neto CP (2000) Lignin aerobic oxidation promoted by molybdovanadophosphate polyanion PMo7V5O40 (8−). Study on the oxidative cleavage of beta-O-4 aryl ether structures using model compounds. J Mol Catal A 154:217–224

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood. Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Goncalves AR, Schuchardt U (1999) Oxidation of organosolv lignins in acetic acid—Influence of oxygen pressure. Appl Biochem Biotechnol 77–9:127–132

    Article  Google Scholar 

  • Hanson SK, Wu R, Silks LAP (2012) C–C or C–O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed 51:3410–3413

    Article  CAS  Google Scholar 

  • Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74:1055–1059

    Article  CAS  Google Scholar 

  • Lahtinen M, Kruus K, Boer H, Kemell M, Andberg M, Viikari L, Sipila J (2009) The effect of lignin model compound structure on the rate of oxidation catalyzed by two different fungal laccases. J Mol Catal B 57:204–210

    Article  CAS  Google Scholar 

  • Li KC, Xu F, Eriksson KEL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    PubMed  CAS  Google Scholar 

  • Li JB, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561

    Article  PubMed  CAS  Google Scholar 

  • Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49:273–278

    Article  CAS  Google Scholar 

  • Mathias AL, Lopretti MI, Rodrigues AE (1995) Chemical and biological oxidation of pinus-pinaster lignin for the production of vanillin. J Chem Technol Biotechnol 64:225–234

    Article  CAS  Google Scholar 

  • Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) Catalytic C–O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J Am Chem Soc 132:12554–12555

    Article  PubMed  CAS  Google Scholar 

  • Nishinaga A, Tomita H, Nishizawa K, Matsuura T, Ooi S, Hirotsu K (1981) Regioselective formation of peroxyquinolatocobalt(III) complexes in the oxygenation of 2,6-di-tert-butylphenols with cobalt(II) Schiff-base complexes. J Chem Soc Dalton, pp 1504–1514

    Google Scholar 

  • Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351:456–466

    Article  CAS  Google Scholar 

  • Pearl IA (1942) Vanillin from lignin materials. J Am Chem Soc 64:1429–1431

    Article  CAS  Google Scholar 

  • Perng YS, Oloman CW, Watson PA, James BR (1994) Catalytic oxygen bleaching of wood pulp with metal porphyrin and phthalocyanine complexes. Tappi J 77:119–125

    CAS  Google Scholar 

  • Rappoport Z (2003) The chemistry of phenols. Wiley, Hoboken

    Book  Google Scholar 

  • Rathore R, Bosch E, Kochi JK (1994) Selective nitration versus oxidative dealkylation of hydroquinone ethers with nitrogen-dioxide. Tetrahedron 50:6727–6758

    Article  CAS  Google Scholar 

  • Reichert E, Wintringer R, Volmer DA, Hempelmann R (2012) Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys Chem Chem Phys 14:5214–5221

    Article  PubMed  CAS  Google Scholar 

  • Rochefort D, Bourbonnais R, Leech D, Paice MG (2002) Oxidation of lignin model compounds by organic and transition metal-based electron transfer mediators. Chem Commun pp 1182–1183

    Google Scholar 

  • Rochefort D, Leech D, Bourbonnais R (2004) Electron transfer mediator systems for bleaching of paper pulp. Green Chem 6:14–24

    Article  CAS  Google Scholar 

  • Samuel R, Pu YQ, Raman B, Ragauskas AJ (2010) Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl Biochem Biotechnol 162:62–74

    Article  PubMed  CAS  Google Scholar 

  • Sergeev AG, Hartwig JF (2011) Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332:439–443

    Article  PubMed  CAS  Google Scholar 

  • Sippola VO, Krause AOI (2005) Bis(o-phenanthroline)copper-catalysed oxidation of lignin model compounds for oxygen bleaching of pulp. Catal Today 100:237–242

    Article  CAS  Google Scholar 

  • Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C–O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed 49:3791–3794

    Article  CAS  Google Scholar 

  • Tolba R, Tian M, Wen JL, Jiang ZH, Chen AC (2010) Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J Electroanal Chem 649:9–15

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed  CAS  Google Scholar 

  • Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35:245–255

    Article  CAS  Google Scholar 

  • Voitl T, von Rohr PR (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem 1:763–769

    Article  PubMed  CAS  Google Scholar 

  • Voitl T, von Rohr PR (2010) Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49:520–525

    Article  CAS  Google Scholar 

  • Weinstock IA, Atalla RH, Reiner RS, Moen MA, Hammel KE, Houtman CJ, Hill CL (1996) A new environmentally benign technology and approach to bleaching kraft pulp. Polyoxometalates for selective delignification and waste mineralization. New J Chem 20:269–275

    CAS  Google Scholar 

  • Weinstock IA, Atalla RH, Reiner RS, Moen MA, Hammel KE, Houtman CJ, Hill CL, Harrup MK (1997) A new environmentally benign technology for transforming wood pulp into paper—Engineering polyoxometalates as catalysts for multiple processes. J Mol Catal A 116:59–84

    Article  CAS  Google Scholar 

  • Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225–1236

    Article  CAS  Google Scholar 

  • Zhu WM, Ford WT (1993) Oxidation of lignin model compounds in water with dioxygen and hydrogen-peroxide catalyzed by metallophthalocyanines. J Mol Catal 78:367–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000997, and U. S. Department of Energy Office of Industrial Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Bozell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bozell, J.J. (2014). Catalytic Oxidation of Lignin for the Production of Low Molecular Weight Aromatics. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_17

Download citation

Publish with us

Policies and ethics