Skip to main content

Catalytic Dehydration of Lignocellulosic Derived Xylose to Furfural

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

In this chapter we present different biorefinary strategies for the production of Furfural, a top ten platform chemical for making next generation fine chemicals and liquid fuels. Several research articles have been published demonstrating the production of furfural using homogeneous and heterogeneous catalysts in single and biphasic solvent systems. This article summarizes the finding of the most recent research articles with critical discussion on the factors that control the yield and selectivity of furfural. Among several factors, special emphasis has been given on the improvement of partition coefficient of biphasic solvent systems and the effect of pore size of the heterogeneous catalyst in enhancing furfural yield and selectivity. Catalytic dehydration of xylose and its isomer form has been exemplified with Lewis and Brønsted acidic catalysts in understanding the mechanistic role of the individual acid sites in improving furfural yields and minimizing by-products formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antan MJ, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr Res 217:71–85

    Article  Google Scholar 

  • Bare SR, Kelly SD, Sinkler W, Low JJ, Modica FS, Valencia S, Corma A, Nemeth LT (2005) Uniform catalytic site in Sn-β-Zeolite determined using x-ray absorption fine structure. J Am Chem Soc 127:12924–12932

    Article  PubMed  CAS  Google Scholar 

  • Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728

    Article  CAS  Google Scholar 

  • Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Binder JB, Blank JJ, Cefali AV, Raines RT (2010) Synthesis of furfural from xylose and xylan. Chem Sus Chem 3:1268–1272

    Article  CAS  Google Scholar 

  • Brownlee HJ, Miner CS (1948) Industrial development of furfural. Ind Eng Chem 40:201–204

    Article  CAS  Google Scholar 

  • Collyer CA, Blow DM (1990) Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proc Natl Acad Sci USA 87:1362–1366

    Article  PubMed  CAS  Google Scholar 

  • Corma A, Nemeth LT, Renz M, Valencia S (2001) Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature 412:423–425

    Article  PubMed  CAS  Google Scholar 

  • Corma A, Ilorra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  PubMed  CAS  Google Scholar 

  • De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 13:2859–2868

    Article  CAS  Google Scholar 

  • Dias AS, Pillnger M, Valente AA (2005) Liquid phase dehydration of D-xylose in the presence of Keggin-type heteropolyacids. Appl Catal A Gen 285:126–131

    Article  CAS  Google Scholar 

  • Dee SJ, Bell AT (2011) A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing dehydration of glucose and the formation of humins. Chem Sus Chem 4:1166–1173

    Article  CAS  Google Scholar 

  • Dodds D, Gross R (2007) Chemicals from biomass. Science 318:1250–1251

    Article  PubMed  CAS  Google Scholar 

  • Dumitriu S, Dekker M (2005) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Dutta S, De S, Saha B, Alam I (2012) Advanced in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Tech 2:2025–2036

    Article  CAS  Google Scholar 

  • Eisen EO, Joffe J (1966) Salt effects in liquid–liquid equilibria. J Chem Eng Data 11:480–484

    Article  CAS  Google Scholar 

  • GĂ¼rbĂ¼z EI, Wettstein SG, Dumesic JA (2012) Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. Chem Sus Chem 5:383–387

    Article  Google Scholar 

  • Jin S, Chen H (2007) Fractionation of fibrous fraction from steam-exploded rice straw. Process Biochem 42:188–192

    Article  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries—industrial processes and products. Wiley, Weinheim

    Google Scholar 

  • Kim ES, Liu S, Abu-Omar MM, Mosier NS (2012) Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy Fuels 26:1298–1304

    Article  CAS  Google Scholar 

  • Lam E, Majid E, Leung ACW, Cong JH, Mahmoud KA, Luong JHT (2011) Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts. Chem Sus Chem 4:535–541

    Article  CAS  Google Scholar 

  • Lange JP, Heide E, van der Buijtenen JV, Trice R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166

    Article  CAS  Google Scholar 

  • Liu C, Wyman EE (2005) Partial flow of compressed hot water through corn stover to enhance hemicelluloses sugar recovery and enzymatic digestibility of cellulose. Biores Technol 96:1978–1986

    Article  CAS  Google Scholar 

  • Lu YL, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123

    Article  PubMed  CAS  Google Scholar 

  • Lu YL, Mosier NS (2008) Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol Bioeng 101:1170–1181

    Article  PubMed  CAS  Google Scholar 

  • PagĂ¡n-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal 2:930–934

    Article  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331

    Article  CAS  Google Scholar 

  • Weingarten R, Tompsett GA, Conner WC Jr, Huber GW (2011) Design of solid acid catalysts for aqueous phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 279:174–182

    Article  CAS  Google Scholar 

  • Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957

    Article  CAS  Google Scholar 

  • Sievers C, Musin I, Marzialetti T, Valenzuela Olarte MB, Agrawal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. Chem Sus Chem 2:665–671

    Article  CAS  Google Scholar 

  • Takagaki A, Ohara M, Nishimura S, Ebitani K (2010) One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem Lett 39:838–840

    Article  CAS  Google Scholar 

  • Tan TC, Aravinth S (1999) Liquid-liquid equilibria of water/acetic acid/1-butanol system–effects of sodium (potassium) chloride and correlations. Fluid Phase Equilib 163:243–257

    Article  CAS  Google Scholar 

  • Tuteja J, Nishimura S, Ebitani K (2012) One-pot synthesis of furans from various saccharides using a combination of solid acid and base catalysts. Bull Chem Soc Jpn 85:275–281

    Article  CAS  Google Scholar 

  • vom Stein T, Grande PM, Leitner W, de Maria PD (2011) Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock. Chem Sus Chem 4:1592–1594

    Google Scholar 

  • von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Biores Technol 51:43–52

    Article  Google Scholar 

  • Weingarten R, Cho J, Conner WC Jr, Huber GW (2010) Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem 12:1423–1429

    Article  CAS  Google Scholar 

  • Werpy T, Peterson G (2004) Top value added chemicals from biomass, vol. 1. Pacific Northwestern National Laboratory

    Google Scholar 

  • Yamaguchi K, Sakurada T, Ogasawara Y, Mizuno N (2011) Tin-tungsten mixed oxide as efficient heterogeneous catalyst for conversion of saccharides to furan derivatives. Chem Lett 40:542–543

    Article  CAS  Google Scholar 

  • Yang Y, Hu CW, Abu-Omar MM (2012a) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513

    Article  Google Scholar 

  • Yang Y, Hu C-W, Abu-Omar M-M (2012b) Synthesis of furfural from xylose, xylan, and biomass using AlCl3 6H2O in biphasic media via xylose isomerization to xylulose. Chem Sus Chem 5:405–410

    Article  CAS  Google Scholar 

  • Yemis O, Mazza G (2011) Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Biores Technol 102:7371–7378

    Article  CAS  Google Scholar 

  • Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Biores Technol 101:1111–1114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Center for direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0000997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi M. Abu-Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saha, B., Mosier, N.S., Abu-Omar, M.M. (2014). Catalytic Dehydration of Lignocellulosic Derived Xylose to Furfural. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_16

Download citation

Publish with us

Policies and ethics