Skip to main content

Lignocellulosic Biorefineries: Concepts and Possibilities

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

To date, research, development, and commercialization within the bioenergy industry has focused on the production of biofuels, with any unconverted biomass used for production of electricity, biogas, animal feed, or fertilizer. However, both the economics and the environmental impacts of biofuel production could be improved by developing processes to obtain a wider range of chemicals (with higher value) from biomass. Example products range from commodity chemicals such as dicarboxylic acids to nutraceuticals. In this article, the concept of a biorefinery will be explored, especially in comparison to a petroleum refinery. Various products and options to produce non-fuel chemicals from plants biomass are outlined. Such processes would lead to a more diverse and sustainable biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelló S, Montané D (2011) Exploring iron-based multifunctional catalysts for Fischer–Tropsch synthesis: a review. ChemSusChem 4:1538–1556

    Article  PubMed  Google Scholar 

  • Blanch HW (2012) Bioprocessing for biofuels. Curr Opin Biotechnol 23:390–395

    Article  PubMed  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  PubMed  CAS  Google Scholar 

  • Curran KA, Alper HS (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14:289–297

    Article  PubMed  CAS  Google Scholar 

  • Digman B, Joo HS, Kim D-S (2009) Recent progress in gasification/pyrolysis technologies for biomass conversion to energy. Environ Prog Sust Energy 28:47–51

    Article  CAS  Google Scholar 

  • Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  PubMed  CAS  Google Scholar 

  • Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  PubMed  CAS  Google Scholar 

  • Huber G, Dumesic J (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111:119–132

    Article  CAS  Google Scholar 

  • Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:1–18

    Article  Google Scholar 

  • Lynd L, Wyman C, Gerngross T (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  PubMed  CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  PubMed  Google Scholar 

  • McCarty MF (2002) Policosanol safely down-regulates HMG-CoA reductase–potential as a component of the esselstyn regimen. Med Hypotheses 59:268–279

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483

    Article  PubMed  CAS  Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022

    Article  PubMed  CAS  Google Scholar 

  • Naik S, Goud VV, Rout PK, Dalai AK (2010) Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass. Bioresour Technol 101:7605–7613

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2000) Biobased industrial products: research and commercialization priorities. The National Academies Press, Washington DC. http://www.nap.edu/catalog.php?record_id=5295

  • Ohara H (2003) Biorefinery. Appl Microbiol Biotechnol 62:474–477

    Article  PubMed  CAS  Google Scholar 

  • Ravindranath SV, Uppugundla N, Lay JO, Clausen EC, Wilkins M, Ingraham RG, West C, Wu Y, Carrier DJ (2009) Policosanol, alpha-tocopherol, and moisture content as a function of timing of harvest of switchgrass (Panicum virgatum L.). J Agric Food Chem 57:3500–3505

    Article  PubMed  CAS  Google Scholar 

  • Renewable Fuels Association (2013) Biorefinery locations. http://www.ethanolrfa.org/bio-refinery-locations/. Accessed 5 April 2013

  • Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed Engl 51:2564–2601

    Article  PubMed  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  PubMed  CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  PubMed  CAS  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, Mcclure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  PubMed  CAS  Google Scholar 

  • Suenaga H, Smith A (2011) Volatility dynamics and seasonality in energy prices: implications for crack-spread price risk. Energy J 32:27–58

    Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Op Biotechnol 23:364–381

    Article  CAS  Google Scholar 

  • US Department of Energy (2004) Top value added chemicals from biomass. Volume 1: results of screening for potential candidates from sugars and synthesis gas

    Google Scholar 

  • US Department of Energy (2013) Integrated biorefineries. http://www1.eere.energy.gov/biomass/integrated_biorefineries.html. Accessed 5 April 2013

  • Vispute TP, Huber GW (2009) Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem 11:1433–1445

    Article  CAS  Google Scholar 

  • Wikipedia (2013) List of oil refineries. http://en.wikipedia.org/wiki/List_of_oil_refineries. Accessed 5 April 2013

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:775–783

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Biores Technol 96:545–550

    Article  CAS  Google Scholar 

  • Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth F. Reardon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reardon, K.F. (2014). Lignocellulosic Biorefineries: Concepts and Possibilities. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_15

Download citation

Publish with us

Policies and ethics