Skip to main content

Mitochondrial Reactive Oxygen Species in Proapoptotic Effect of Promising Cancer Chemopreventive Phytochemicals

  • Chapter
  • First Online:
  • 871 Accesses

Abstract

Cancer chemopreventive phytochemicals have been identified from multiple dietary plants as well as from components of alternative medicine. Preclinical studies using rodent cancer models have provided compelling experimental evidence for cancer chemopreventive effects of these phytochemicals. Mitochondria-derived reactive oxygen species (ROS) play a critical role in their prodeath and chemopreventive responses. These phytochemicals inhibit mitochondrial electron transport chains causing ROS production, thus triggering apoptotic and/or autophagic cancer cell death. Although normal epithelial cells are resistant to mitochondrial perturbations by many phytochemicals, underlying mechanisms of the differential response in cancer cells versus normal cells remain elusive. This chapter reviews experimental evidence linking mitochondrial reactive oxygen species in cancer chemopreventive effects of a few promising phytochemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ITCs:

isothiocyanates

ROS:

reactive oxygen species

MRC:

mitochondrial respiratory chain

PEITC:

phenethyl isothiocyanate

BITC:

benzyl isothiocyanate

SFN:

D,L-sulforaphane

RES:

resveratrol

WA:

withaferin A

MOMP:

mitochondrial outer membrane permeabilization

GSH:

glutathione

OXPHOS:

oxidative phosphorylation

References

  • Antony ML, Singh SV (2011) Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyl trisulfide. Indian J Exp Biol 49:805–816

    PubMed  CAS  Google Scholar 

  • Antony ML, Kim SH, Singh SV (2012) Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death. PLoS One 7:e32267

    Article  PubMed  CAS  Google Scholar 

  • Antosiewicz J, Ziolkowski W, Kar S, Powolny AA, Singh SV (2008) Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med 74:1570–1579

    Article  PubMed  CAS  Google Scholar 

  • Awad AB, Burr AT, Fink CS (2005) Effect of resveratrol and beta-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. Prostaglandins Leukot Essent Fatty Acids 72:219–226

    Article  PubMed  CAS  Google Scholar 

  • Azmi AS, Bhat SH, Hadi SM (2005) Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett 579:3131–3135

    Article  PubMed  CAS  Google Scholar 

  • Azmi AS, Bhat SH, Hanif S, Hadi SM (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 580:533–538

    Article  PubMed  CAS  Google Scholar 

  • Bommareddy A, Hahm ER, Xiao D, Powolny AA, Fisher AL, Jiang Y, Singh SV (2009) Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res 69:3704–3712

    Article  PubMed  CAS  Google Scholar 

  • Canter JA, Kallianpur AR, Parl FF, Millikan RC (2005) Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res 65:8028–8033

    PubMed  CAS  Google Scholar 

  • Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  PubMed  Google Scholar 

  • Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97

    Article  PubMed  CAS  Google Scholar 

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in fisher rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  PubMed  CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Kroemer G (2011) Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 15:2937–2949

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2010) Mitochondrial gateways to cancer. Mol Aspects Med 31:1–20

    Article  PubMed  CAS  Google Scholar 

  • Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB (2007) From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol 5:25–37

    Article  PubMed  Google Scholar 

  • Gibson TM, Ferrucci LM, Tangrea JA, Schatzkin A (2010) Epidemiological and clinical studies of nutrition. Semin Oncol 37:282–296

    Article  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  PubMed  CAS  Google Scholar 

  • Goss PE, Ingle JN, Ales-Martinez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J, McTiernan A, Robbins J, Johnson KC, Martin LW, Winquist E, Sarto GE, Garder JE, Fabian CJ, Pujol P, Maunsell E, Farmer P, Gelmon KA, Tu D, Richardson H (2011) Exemestane for breast-cancer prevention in postmenopausal women. N Eng J Med 364:2381–2391

    Article  CAS  Google Scholar 

  • Greenlee H (2012) Natural products for cancer prevention. Semin Oncol Nurs 28:29–44

    Article  PubMed  Google Scholar 

  • Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37:948–965

    Article  PubMed  CAS  Google Scholar 

  • Hahm ER, Singh SV (2012) Bim contributes to phenethyl isothiocyanate-induced apoptosis in breast cancer cells. Mol Carcinogenesis 51:465–474

    Article  CAS  Google Scholar 

  • Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 6:e23354

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS (1995) Chemoprevention by isothiocyanates. J Cell Biochem 22(suppl.):195–209

    Google Scholar 

  • Hecht SS (1999) Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 129(suppl.):768–774

    Google Scholar 

  • Heiss EH, Schilder YD, Dirsch VM (2007) Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. J Biol Chem 282:26759–26766

    Article  PubMed  CAS  Google Scholar 

  • Huang SH, Wu LW, Huang AC, Yu CC, Lien JC, Huang YP, Yang JS, Yang JH, Hsiao YP, Wood WG, Yu CS, Chung JG (2012) Benzyl isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375.S2 cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptor-mediated multiple signaling pathways. J Agric Food Chem 60:665–675

    Article  PubMed  CAS  Google Scholar 

  • Hussain AR, Uddin S, Bu R, Khan OS, Ahmed SO, Ahmed M, Al-Kuraya KS (2011) Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines. PLoS One 6:e24703

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    Article  PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  • Juan ME, Wenzel U, Daniel H, Planas JM (2008) Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J Agric Food Chem 56:4813–4818

    Article  PubMed  CAS  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wikens LR, John EM, Howe GR, Dreon DM, West DW, Paffenbarger RS Jr (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Wu G, Huo WQ, Zhang Y, Jin FS (2012) Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells. Int J Urol 19:757–764

    Article  PubMed  CAS  Google Scholar 

  • Liu BN, Yan HQ, Wu X, Pan ZH, Zhu Y, Meng ZW, Zhou QH, Xu K (2013) Apoptosis induced by benzyl isothiocyanate in gefitinib-resistant lung cancer cells is associated with Akt/MAPK pathways and generation of reactive oxygen species. Cell Biochem Biophys 66:81–92

    Article  PubMed  CAS  Google Scholar 

  • Low IC, Chen ZX, Pervaiz S (2010) Bcl-2 modulates resveratrol-induced ROS production by regulating mitochondrial respiration in tumor cells. Antioxid Redox Signal 13:807–819

    Article  PubMed  CAS  Google Scholar 

  • Malik F, Kumar A, Bhushan S, Khan S, Bhatia A, Suri KA, Qazi GN, Singh J (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HA-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133

    Article  PubMed  CAS  Google Scholar 

  • Manoharan S, Panjamurthy K, Menon VP, Balakrishnan S, Alias LM (2009) Protective effect of Withaferin-A on tumour formation in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis in hamsters. Indian J Exp Biol 47:16–23

    PubMed  CAS  Google Scholar 

  • Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S, Larue L, Debuire B, Lemoine A, Brenner C, Lemaire C (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16:1014–1027

    Article  PubMed  CAS  Google Scholar 

  • Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP, Saha DT, Goldman R, Chung FL (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res 67:6409–6416

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Uehara N, Kimura A, Sasaki T, Yuri T, Yoshizawa K, Tsubura A (2012) Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol 40:1020–1028

    PubMed  CAS  Google Scholar 

  • Modica-Napolitano JS, Singh KK (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762

    Article  PubMed  CAS  Google Scholar 

  • Muqbil I, Beck FW, Bao B, Sarkar FH, Mohammad RM, Hadi SM, Azmi AS (2012) Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol. Curr Pharm Des 18:1645–1654

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, Osawa T, Uchida K (2002) Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 277:8492–8499

    Article  PubMed  CAS  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  Google Scholar 

  • Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724

    Article  PubMed  CAS  Google Scholar 

  • Powolny AA, Singh SV (2010) Differential response of normal (PrEC) and cancerous human prostate cells (PC-3) to phenethyl isothiocyanate-mediated changes in expression of antioxidant defense genes. Pharm Res 27:2766–2775

    Article  PubMed  CAS  Google Scholar 

  • Powolny AA, Bommareddy A, Singh SV (2012) Slow but steady progress in cancer chemoprevention with phenethyl isothiocyanate: fulfilled promises and translational challenges, In: Sarkar FH (ed) Nutraceuticals and Cancer, pp 231–258

    Google Scholar 

  • Rose P, Armstrong JS, Chua YL, Ong CN, Whiteman M (2005) Beta-phenylethyl isothiocyanate mediated apoptosis; contribution of Bax and the mitochondrial death pathway. Int J Biochem Cell Biol 37:100–119

    Article  PubMed  CAS  Google Scholar 

  • Scatena R (2012) Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation. Adv Exp Med Biol 942:287–308

    Article  PubMed  CAS  Google Scholar 

  • Sehrawat A, Singh SV (2013) Molecular mechanisms of cancer chemoprevention with benzyl isothiocyanate. In: Kong AN (ed) Inflammation and cancer: mechanisms and dietary approaches for cancer prevention CRC Press-Taylor and Francis (in press)

    Google Scholar 

  • Singh SV, Singh K (2012) Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 33:1833–1842

    Article  PubMed  CAS  Google Scholar 

  • Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924

    Article  PubMed  CAS  Google Scholar 

  • Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R (2012) Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 104:1228–1239

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253

    Article  PubMed  CAS  Google Scholar 

  • Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68:76617–76669

    Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y, Chen Z, Pelicano H, Plunkett W, Wierda WG, Keating MJ, Huang P (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112:1912–1922

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven DT, Goldbohm RA, Poppel G van, Verhagen H, Brandt PA van den (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Warin R, Chambers WH, Potter DM, Singh SV (2009) Prevention of mammary carcinogenesis in MMTV-neu mice by cruciferous vegetable constituent benzyl isothiocyanate. Cancer Res 69:9473–9480

    Article  PubMed  CAS  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227:450–456

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhu Y, Yan H, Liu B, Li Y, Zhou Q, Xu K (2010) Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. BMC Cancer 10:269

    Article  PubMed  Google Scholar 

  • Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST, Ma CY, Hsia TC, Ko YC, Chung JG (2011) Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res 29:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Singh SV (2010) p66shc is indispensable for phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Cancer Res 70:3150–3158

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Lew KL, Zeng Y, Xiao H, Marynowski SW, Dhir R, Singh SV (2006) Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis 27:2223–2234

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Powolny AA, Singh SV (2008) Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem 283:30151–30163

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, Desai D, Amin S, Herman-Antosiewicz A, Singh SV (2009) Cellular responses to cancer chemopreventive agent DL, -sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species. Pharm Res 26:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH, Hahm ER, Normolle D, Van Houten B, Singh SV (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285:26558–26569

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Thornalley PJ (2001) Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 61:165–177

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437

    Article  PubMed  CAS  Google Scholar 

  • Yaseen A, Chen S, Hock S, Rosato R, Dent P, Dai Y, Grant S (2012) Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors via reactive oxygen species -mediated activation of the extrinsic apoptotic pathway. Mol Pharmacol 82:1030–1041

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–3150

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Tang L, Gonzalez V (2003) Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther 2:1045–1052

    PubMed  CAS  Google Scholar 

  • Zhang H, Trachootham D, Lu W, Carew J, Giles FJ, Keating MJ, Arlinghaus RB, Huang P (2008) Effective killing of Gleevec-resistant CML cells with T315I mutation by a natural compound PEITC through redox-mediated mechanism. Leukemia 22:1191–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work cited from the corresponding author’s laboratory was supported in part by the National Cancer Institute of the National Institutes of Health under Award Numbers RO1 CA101753, RO1 CA 115498, RO1 CA129347, and R01 CA142604. The content of this chapter is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra V. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sehrawat, A., Singh, S. (2013). Mitochondrial Reactive Oxygen Species in Proapoptotic Effect of Promising Cancer Chemopreventive Phytochemicals. In: Chandra, D. (eds) Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9326-6_7

Download citation

Publish with us

Policies and ethics