OxPhos Defects and Their Role in Cancer Initiation and Progression

  • Nagendra Yadava
  • Ahmed Khalil
  • Sallie S. Schneider
Chapter

Abstract

This chapter provides a brief overview of the oxidative phosphorylation (OxPhos) carried out by five multimeric enzyme complexes. The biogenesis of the OxPhos system is very complicated because of its dual genetic origin and involvement of a large number of genes, whose products are made at two different locations, the cytosol and mitochondrial matrix. Both genetic and nongenetic factors can cause OxPhos deficiency, which can alter signaling pathways such as p53, AKT, and NF-κB and thereby promote cancer development. A model for tumorigenesis due to OxPhos deficiency is described. This model suggests that functional decline of mitochondria with age may cause p53 suppression and thereby increase the incidence of cancer. Phytochemicals can prevent cancer development by improving OxPhos and by alleviating oxidative/redox stress and chronic inflammation.

Keywords

Oxidative phosphorylation OxPhos Warburg hypothesis Cancer Tumorigenesis Respiratory chain p53 Host factors Environmental factors Oncogenes Tumor suppressor Cancer metabolism 

Notes

Funding

This work was supported by start-up and translational funds from CEAR at the PVLSI supported by an award (A00000000004448) from Massachusetts Technology Collaborative as administrator of the John Adams Innovation Institute to N.Y. We also thank Seahorse Bioscience Inc. for their in-kind support.

References

  1. Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfus T (2003) Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull Exp Biol Med 136:585–587PubMedGoogle Scholar
  2. Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL, Roncador G, Fernandez-Malave E, Chamorro M, Cuezva JM (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2:138–145PubMedGoogle Scholar
  3. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539PubMedGoogle Scholar
  4. Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS ONE 6:e24792PubMedGoogle Scholar
  5. Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta 1807:1432–1443PubMedGoogle Scholar
  6. Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers HJ, Hoefsloot LH, Hermsen MA, Suarez C, Hussain AK, Vriends AH, Hes FJ, Jansen JC, Tops CM, Corssmit EP, de KP, Lenders JW, Cremers CW, Devile P, Dinjens WN, Krijger RR de, Robledo M (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372PubMedGoogle Scholar
  7. Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 30:45–51Google Scholar
  8. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306PubMedGoogle Scholar
  9. Bosch M, Mari M, Gros SP, Fernandez-Checa JC, Pol A (2011a) Mitochondrial cholesterol: a connection between caveolin metabolism and disease. Traffic 12:1483–1489Google Scholar
  10. Bosch M, Mari M, Herms A, Fernandez A, Fajardo A, Kassan A, Giralt A, Colel A, Balgoma D, Barbero E, Gonzalez-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gros SP, Garcia-Ruiz C, Perez-Navarro E, Fernandez-Checa JC, Pol A (2011b) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 21:681–686Google Scholar
  11. Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123:2527–2532PubMedGoogle Scholar
  12. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelman BD, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571–583PubMedGoogle Scholar
  13. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312PubMedGoogle Scholar
  14. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662PubMedGoogle Scholar
  15. Briere JJ, Favier J, Benit P, El G V, Lorenzato A, Rabier D, Di Renzo MF, Gimenez-Roqueplo AP, Rustin P (2005) Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet 14:3263–3269PubMedGoogle Scholar
  16. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagolof A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol GenetGoogle Scholar
  17. Campbel AM, Chan SH (2008) Mitochondrial membrane cholesterol the voltage dependent anion channel (VDAC) and the Warburg effect. J Bioenerg Biomembr 40:193–197Google Scholar
  18. Cantor JR, Sabatini DM (2012) Cancer cell metabolism one hallmark many faces. Cancer Discov 2:881–898PubMedGoogle Scholar
  19. Chandra D, Singh KK (2010) Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta 1807:620–625PubMedGoogle Scholar
  20. Chen XH, Zhao YP, Xue M, Ji CB, Gao CL, Zhu JG, Qin DN, Kou CZ, Qin XH, Tong ML, Guo XR (2010) TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol Cell Endocrinol 328:63–69PubMedGoogle Scholar
  21. Chen PL, Chen CF, Chen Y, Guo XE, Huang CK, Shew JY, Reddick RL, Wallace DC, Le WH (2012a) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene.Google Scholar
  22. Chen YC, Taylor EB, Dephoure N, Heo JM, Tonhato A, Papandreou I, Nath N, Denko NC, Gygi SP, Rutter J (2012b) Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15:348–360Google Scholar
  23. Cheng G, Lopez M, Zielonka J, Hauser AD, Joseph J, McAllister D, Rowe JJ, Sug SL, Williams CL, Kalyanaraman B (2011a) Mitochondria-targeted nitroxides exacerbate fluvastatin-mediated cytostatic and cytotoxic effects in breast cancer cells. Cancer Biol Ther 12: 707–717Google Scholar
  24. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011b) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 108: 8674–8679Google Scholar
  25. Chinnery PF, Elliot HR, Hudson G, Samuels DC, Relton CL (2012) Epigenetics epidemiology and mitochondrial DNA diseases. Int J Epidemiol 41:177–187PubMedGoogle Scholar
  26. Cho JW, Lee KS, Kim CW (2007) Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 19:469–474Google Scholar
  27. Choi SJ, Kim SH, Kang HY, Le J, Bhak JH, Sohn I, Jung SH, Choi YS, Kim HK, Han J, Huh N, Le G, Kim BC, Kim J (2011) Mutational hotspots in the mitochondrial genome of lung cancer. Biochem Biophys Res Commun 407:23–27PubMedGoogle Scholar
  28. Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819:1035–1054PubMedGoogle Scholar
  29. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:214–217PubMedGoogle Scholar
  30. Clerc P, Polster BM (2012) Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS ONE 7:e34465PubMedGoogle Scholar
  31. Compton S, Kim C, Griner NB, Potluri P, Scheffler IE, Sen S, Jerry DJ, Schneider S, Yadava N (2011) Mitochondrial Dysfunction Impairs Tumor Suppressor p53 Expression/Function. J Biol Chem 286:20297–20312PubMedGoogle Scholar
  32. Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20:557–569PubMedGoogle Scholar
  33. Cuezva JM, Krajewska M, Heredia ML de, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) The bioenergetic signature of cancer a marker of tumor progression. Cancer Res 62:6674–6681PubMedGoogle Scholar
  34. Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN (2007) Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett 249:249–255PubMedGoogle Scholar
  35. Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K, Tsichlis PN (2005) Tpl2/cot signals activate ERK JNK and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 280:23748–23757PubMedGoogle Scholar
  36. DeFrancesco L, Scheffler IE, Bissel MJ (1976) A respiration-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem 251:4588–4595PubMedGoogle Scholar
  37. DeFrancesco L, Werntz D, Scheffler IE (1975) Conditionally lethal mutations in chinese hamster cells Characterization of a cell line with a possible defect in the Krebs cycle. J Cell Physiol 85:293–305PubMedGoogle Scholar
  38. Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094PubMedGoogle Scholar
  39. Ditta G, Soderberg K, Landy F, Scheffler IE (1976) The selection of Chinese hamster cells deficient in oxidative energy metabolism Somatic. Cell Genet 2:331–344Google Scholar
  40. Donnelly M, Scheffler IE (1976) Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J Cell Physiol 89:39–51PubMedGoogle Scholar
  41. Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hil BG, Zhang J, Landar A, Darley-Usmar VM (2011) Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 51:1621–1635PubMedGoogle Scholar
  42. Erb M, Hoffmann-Enger B, Deppe H, Soeberdt M, Haefeli RH, Rummey C, Feurer A, Gueven N (2012) Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS ONE 7:e36153PubMedGoogle Scholar
  43. Fatemie S, Goh J, Pettan-Brewer C, Ladiges W (2012) Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells. Pathobiol Aging Age Relat Dis 2Google Scholar
  44. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ (2007) Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci. U S A 104: 16633–16638PubMedGoogle Scholar
  45. Finley LW, Carracedo A, Le J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19:416–428PubMedGoogle Scholar
  46. Fosslien E (2008) Cancer morphogenesis role of mitochondrial failure. Ann Clin Lab Sci. 38:307–329PubMedGoogle Scholar
  47. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523Google Scholar
  48. Gaona-Gaona L, Molina-Jijon E, Tapia E, Zazueta C, Hernandez-Pando R, Calderon-Oliver M, Zarco-Marquez G, Pinzon E, Pedraza-Chaverri J (2011) Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology 286:20–27Google Scholar
  49. Garcia-Ruiz I, Rodriguez-Juan C, az-Sanjuan T, del HP, Colina F, Munoz-Yague T, Solis-Herruzo JA (2006) Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 44:581–591PubMedGoogle Scholar
  50. Gasparre G, Hervouet E, de LE, Demont J, Pennisi LF, Colombel M, Mege-Lechevallier F, Scoazec JY, Bonora E, Smeets R, Smeitink J, Lazar V, Lespinasse J, Giraud S, Godinot C, Romeo G, Simonnet H (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17:986–995PubMedGoogle Scholar
  51. Gasparre G, Iommarini L, Porcelli AM, Lang M, Ferri GG, Kurelac I, Zuntini R, Mariani E, Pennisi LF, Pasquini E, Pasquinelli G, Ghelli A, Bonora E, Ceccarelli C, Rugolo M, Salfi N, Romeo G, Carelli V (2009) An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Hum Mutat 30:391–396PubMedGoogle Scholar
  52. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl. Acad. Sci. U. S. A 104:9001–9006PubMedGoogle Scholar
  53. Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106PubMedGoogle Scholar
  54. Gochhait S, Bhat A, Sharma S, Singh YP, Gupta P, Bamezai RN (2008) Concomitant presence of mutations in mitochondrial genome and p53 in cancer development—a study in north Indian sporadic breast and esophageal cancer patients. Int J Cancer 123:2580–2586PubMedGoogle Scholar
  55. Goel A, Boland CR, Chauhan DP (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172:111–118Google Scholar
  56. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC. Cancer 11:191PubMedGoogle Scholar
  57. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, Han JH, Lowstuter K, Longmate J, Sommer SS, Weitzel JN (2009) Beyond Li Fraumeni Syndrome clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256PubMedGoogle Scholar
  58. Guan S, Feng H, Song B, Guo W, Xiong Y, Huang G, Zhong W, Huo M, Chen N, Lu J, Deng X (2011) Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int Immunopharmacol 11:2194–2199Google Scholar
  59. Gudkov AV, Gurova KV, Komarova EA (2011) Inflammation and p53: A Tale of Two Stresses. Genes Cancer 2:503–516PubMedGoogle Scholar
  60. Guo J, Zheng L, Liu W, Wang X, Wang Z, Wang Z, French AJ, Kang D, Chen L, Thibodeau SN, Liu W (2011) Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer. Cancer Res 71:2978–2987PubMedGoogle Scholar
  61. Haigis MC, Deng CX, Finley LW, Kim HS, Gius D (2012) SIRT3 is a mitochondrial tumor suppressor a scientific tale that connects aberrant cellular ROS the Warburg effect and carcinogenesis. Cancer Res 72:2468–2472PubMedGoogle Scholar
  62. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  63. Hanahan D, Weinberg RA (2011) Hallmarks of cancer the next generation. Cell 144:646–674PubMedGoogle Scholar
  64. Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer an inflammatory issue. Ann N Y Acad Sci 1229:45–52PubMedGoogle Scholar
  65. Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012a) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533Google Scholar
  66. Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012b) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533Google Scholar
  67. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321PubMedGoogle Scholar
  68. Hedskog L, Zhang S, Ankarcrona M (2012) Strategic role for mitochondria in Alzheimer’s disease and cancer. Antioxid Redox Signal 16:1476–1491PubMedGoogle Scholar
  69. Her I, Buchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383Google Scholar
  70. Hinkal G, Parikh N, Donehower LA (2009) Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS ONE 4:e6654PubMedGoogle Scholar
  71. Hollerhage M, Matusch A, Champy P, Lombes A, Ruberg M, Oertel WH, Hoglinger GU (2009) Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 220:133–142PubMedGoogle Scholar
  72. Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham SD Jr, Gramlich T, Wallace DC (1996) Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes. Cancer 15:95–101Google Scholar
  73. Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J (2011) Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS ONE 6:e23401PubMedGoogle Scholar
  74. Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, Gonzalez-Baron M, Cuezva JM (2005) Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26:2095–2104PubMedGoogle Scholar
  75. Jain SK, Rains J, Croad J, Larson B, Jones K (2009) Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 11:241–249Google Scholar
  76. Jekabsons MB, Nicholls DG (2004) In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 279:32989–33000PubMedGoogle Scholar
  77. Jiang L, He S, Sun C, Pan Y (2012) Selective (1)O(2) quenchers, oligostilbenes, from Vitis wilsonae: structural identification and biogenetic relationship. Phytochemistry 77:294–303Google Scholar
  78. Johnson RF, Witzel II, Perkins ND (2011) p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res 71:5588–5597PubMedGoogle Scholar
  79. Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25:400–410, 413Google Scholar
  80. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618PubMedGoogle Scholar
  81. Keijer J, Bekkenkamp-Grovenstein M, Venema D, Dommels YE (2011) Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta 1807:697–706PubMedGoogle Scholar
  82. Kellof GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’shaughnessy J, Guyton KZ, Mankof DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808Google Scholar
  83. Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8:66–69PubMedGoogle Scholar
  84. Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Co IF, Klopstock T, Chinnery PF (2009) Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132:2317–2326PubMedGoogle Scholar
  85. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11:325–337PubMedGoogle Scholar
  86. Kulawiec M, Safina A, Desouki MM, Stil I, Matsui S, Bakin A, Singh KK (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther 7:1732–1743PubMedGoogle Scholar
  87. Kunst HP, Rutten MH, Monnink JP de, Hoefsloot LH, Timmers HJ, Marres HA, Jansen JC, Kremer H, Bayley JP, Cremers CW (2011) SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 17:247–254PubMedGoogle Scholar
  88. Kuo JJ, Chang HH, Tsai TH, Lee TY (2012) Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med 30:673–679Google Scholar
  89. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122Google Scholar
  90. Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DM, Banerje S, Das K, Sa G, Das T (2009) Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. CarcinogenesisGoogle Scholar
  91. Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, White K, Kwok PY, Pawlikowska L, Tranah GJ (2012) Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res 72:686–695PubMedGoogle Scholar
  92. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnel JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942PubMedGoogle Scholar
  93. Le SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 72:3607–3617Google Scholar
  94. Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L, Bromberg J (2010) Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 12:R80PubMedGoogle Scholar
  95. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344PubMedGoogle Scholar
  96. Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, Li F, Liang D, Liu Z, Zhang X, Cao Y, Zhang N, Yang Z (2013) Salidroside attenuates inflammatory responses by suppressing nuclear factor-kappaB and mitogen activated protein kinases activation in lipopolysaccharideinduced mastitis in mice. Inflamm Res 62:9–15Google Scholar
  97. Li F, Tang H, Xiao F, Gong J, Peng Y, Meng X (2011) Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules 16:9912–9924Google Scholar
  98. Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3:9PubMedGoogle Scholar
  99. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedGoogle Scholar
  100. Lumini-Oliveira J, Magalhaes J, Pereira CV, Moreira AC, Oliveira PJ, Ascensao A (2011) Endurance training reverts heart mitochondrial dysfunction permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion 11:54–63PubMedGoogle Scholar
  101. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89:237–245Google Scholar
  102. Mariappan N, Elks CM, Haque M, Francis J (2012) Interaction of TNF with Angiotensin II Contributes to Mitochondrial Oxidative Stress and Cardiac Damage in Rats. PLoS ONE 7:e46568PubMedGoogle Scholar
  103. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De SE, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13:1272–1279PubMedGoogle Scholar
  104. Mayr JA, Meierhofer D, Zimmerman F, Feichtinger R, Kogler C, Ratschek M, Schmeller N, Sperl W, Kofler B (2008) Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res 14:2270–2275PubMedGoogle Scholar
  105. Metallo CM, Gameiro PA, Bel EL, Mattaini KR, Yang J, Hiller K, Jewel CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384Google Scholar
  106. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779PubMedGoogle Scholar
  107. Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V (2011) Mitochondrial protein import and the genesis of steroidogenic mitochondria. Mol Cell Endocrinol 336:70–79PubMedGoogle Scholar
  108. Mito T, Kikkawa Y, Shimizu A, Hashizume O, Katada S, Imanishi H, Ota A, Kato Y, Nakada K, Hayashi J (2013) Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS ONE 8:e55789PubMedGoogle Scholar
  109. Modica-Napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7:121–131Google Scholar
  110. Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch G, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 25:3646–3660Google Scholar
  111. Mukherje S, Das SK (2012) Translocator protein (TSPO) in breast cancer. Curr. Mol Med 12:443–457Google Scholar
  112. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388Google Scholar
  113. Ni Y, He X, Chen J, Moline J, Mester J, Orlof MS, Ringel MD, Eng C (2012) Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 21:300–310PubMedGoogle Scholar
  114. Nicholls DG (2008) Forty years of Mitchell’s proton circuit From little grey books to little grey cells. Biochim Biophys Acta 1777:550–556PubMedGoogle Scholar
  115. Niture SK, Kaspar JW, Shen J, Jaiswal AK (2010) Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244:37–42PubMedGoogle Scholar
  116. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302PubMedGoogle Scholar
  117. Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target Magnum overview. IUBMB Life 65:273–281PubMedGoogle Scholar
  118. Park J, Kusminski CM, Chua SC, Scherer PE (2010) Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol 177:3133–3144PubMedGoogle Scholar
  119. Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y (2009) A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18:1578–1589PubMedGoogle Scholar
  120. Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunket W, Huang P (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175:913–923PubMedGoogle Scholar
  121. Petros JA, Bauman AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hal J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshal FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102:719–724PubMedGoogle Scholar
  122. Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9:1032–1046PubMedGoogle Scholar
  123. Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, Pennisi F, Morra I, Ciccarelli E, Melcarne A, Bartoletti-Stella A, Salfi N, Tallini G, Martinuzzi A, Carelli V, Attimonelli M, Rugolo M, Romeo G, Gasparre G (2009) The genetic and metabolic signature of oncocytic transformation implicates HIF1{alpha} destabilization. Hum Mol Genet 19:1019–1032PubMedGoogle Scholar
  124. Potluri P, Davila A, Ruiz-Pesini E, Mishmar D, O’Hearn S, Hancock S, Simon M, Scheffler IE, Wallace DC, Procaccio V (2009) A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 96:189–195PubMedGoogle Scholar
  125. Remels AH, Gosker HR, Schrauwen P, Hommelberg PP, Sliwinski P, Polkey M, Galdiz J, Wouters EF, Langen RC, Schols AM (2010) TNF-alpha impairs regulation of muscle oxidative phenotype: implications for cachexia. FASEB J 24:5052–5062PubMedGoogle Scholar
  126. Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-kappaB signaling: impact on cancer and aging process. J Cell Physiol 224:1–6Google Scholar
  127. Samavati L, Le I, Mathes I, Lottspeich F, Hutteman M (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144PubMedGoogle Scholar
  128. Sampey BP, Freemerman AJ, Zhang J, Kuan PF, Galanko JA, O’Connel TM, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Newgard CB, Brauer HA, Troester MA, Makowski L (2012) Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE 7: e38812Google Scholar
  129. Sanchez-Cenizo L, Formentini L, Aldea M, Ortega AD, Garcia-Huerta P, Sanchez-Arago M, Cuezva JM (2010) The up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the mitochondrial H -ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol ChemGoogle Scholar
  130. Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, Leboeuf SE, Gay LJ, Yagi T, Felding-Haberman B (2013) Mitochondrial complex I activity and NAD /NADH balance regulate breast cancer progression. J Clin Invest 123:1068–1081PubMedGoogle Scholar
  131. Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128PubMedGoogle Scholar
  132. Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y (2011) Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 20:4605–4616PubMedGoogle Scholar
  133. Shirakami Y, Shimizu M, Moriwaki H (2012) Cancer chemoprevention with green tea catechins from bench to bed. Curr Drug Targets 13:1842–1857PubMedGoogle Scholar
  134. Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M (2009) Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516–524PubMedGoogle Scholar
  135. Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restal C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035–2043PubMedGoogle Scholar
  136. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897PubMedGoogle Scholar
  137. Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K, Kawachi H, Watanabe K (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 57:1649–1659Google Scholar
  138. Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM (2011) Exercise Training Increases Mitochondrial Biogenesis in the Brain. J Appl PhysiolGoogle Scholar
  139. Sun W, Zhou S, Chang SS, McFate T, Verma A, Califano JA (2009) Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 15:476–484PubMedGoogle Scholar
  140. Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, Corral-Escariz M, Soro I, Lopez-Bernardo E, Perales-Clemente E, Martinez-Ruiz A, Enriquez JA, Aragones J, Cadenas S, Landazuri MO (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14:768–779PubMedGoogle Scholar
  141. Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24:7391–7393PubMedGoogle Scholar
  142. Theodoratou E, Din FV, Farrington SM, Cetnarskyj R, Barnetson RA, Porteous ME, Dunlop MG, Campbel H, Tenesa A (2010) Association between common mtDNA variants and all-cause or colorectal cancer mortality. Carcinogenesis 31:296–301PubMedGoogle Scholar
  143. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals–promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120:451–458PubMedGoogle Scholar
  144. Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM (2010) The global burden of cancer: priorities for prevention. Carcinogenesis 31:100–110PubMedGoogle Scholar
  145. Tormos KV, Chandel NS (2010) Inter-connection between mitochondria and HIFs 4. J Cell Mol Med 14:795–804PubMedGoogle Scholar
  146. Tornatore L, Thotakura AK, Bennet J, Moretti M, Franzoso G (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22:557–566PubMedGoogle Scholar
  147. Tosetti F, Noonan DM, Albini A (2009) Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals. Int J Cancer 125:1997–2003PubMedGoogle Scholar
  148. Tseng LM, Yin PH, Yang CW, Tsai YF, Hsu CY, Chi CW, Le HC (2011) Somatic mutations of the mitochondrial genome in human breast cancers. Genes Chromosomes. Cancer 50:800–811Google Scholar
  149. van WC, Sun Y, Cheung HS, Moraes CT (2006) Oxidative phosphorylation dysfunction modulates expression of extracellular matrix–remodeling genes and invasion. Carcinogenesis 27:409–418Google Scholar
  150. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grim J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedGoogle Scholar
  151. Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL (2012) Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod PatholGoogle Scholar
  152. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening. Antioxid Redox Signal 13:1649–1663PubMedGoogle Scholar
  153. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases aging and cancer a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedGoogle Scholar
  154. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698PubMedGoogle Scholar
  155. Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409Google Scholar
  156. Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedGoogle Scholar
  157. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308PubMedGoogle Scholar
  158. Wat IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827Google Scholar
  159. Weber WA, Schwaiger M, Avril N (2000) Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol 27:683–687PubMedGoogle Scholar
  160. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcet P, Lesnefsky EJ, Larner AC (2009a) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797Google Scholar
  161. Wegrzyn P, Yarwood SJ, Fiegler N, Bzowska M, Koj A, Mizgalska D, Malicki S, Pajak M, Kasza A, Kachamakova-Trojanowska N, Bereta J, Jura J, Jura J (2009b) Mimitin a novel cytokine-regulated mitochondrial protein. BMC Cell Biol 10:23Google Scholar
  162. Xu HN, Nioka S, Glickson JD, Chance B, Li LZ (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15:036010PubMedGoogle Scholar
  163. Xu HN, Tchou J, Chance B, Li LZ (2013) Imaging the redox States of human breast cancer core biopsies. Adv Exp Med Biol 765:343–349PubMedGoogle Scholar
  164. Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE (2002) Species-specific and mutant MWFE proteins Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 277:21221–21230PubMedGoogle Scholar
  165. Yadava N, Houchens T, Potluri P, Scheffler IE (2004) Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 279:12406–12413PubMedGoogle Scholar
  166. Yadava N, Schneider SS, Jerry DJ, Kim C (2013) Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia 18:75–87Google Scholar
  167. Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D (2010) Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61 L). Cancer Biol Ther 9Google Scholar
  168. Yang J, Staples O, Thomas LW, Briston T, Robson M, Poon E, Simoes ML, El-Emir E, Buffa FM, Ahmed A, Annear NP, Shukla D, Pedley BR, Maxwel PH, Harris AL, Ashcroft M (2012) Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest 122:600–611PubMedGoogle Scholar
  169. Zhong H, Xin H, Wu LX, Zhu YZ (2010) Salidroside attenuates apoptosis in ischemic cardiomyocytes a mechanism through a mitochondria-dependent pathway. J Pharmacol Sci 114:399–408PubMedGoogle Scholar
  170. Zimmerman FA, Mayr JA, Neureiter D, Feichtinger R, Alinger B, Jones ND, Eder W, Sperl W, Kofler B (2009) Lack of complex I is associated with oncocytic thyroid tumours. Br J Cancer 100:1434–1437Google Scholar
  171. Zimmerman FA, Mayr JA, Feichtinger R, Neureiter D, Lechner R, Koegler C, Ratschek M, Rusmir H, Sargsyan K, Sperl W, Kofler B (2011) Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front Biosci (Elite Ed) 3:315–325Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nagendra Yadava
    • 1
    • 2
    • 3
  • Ahmed Khalil
    • 1
  • Sallie S. Schneider
    • 1
    • 4
  1. 1.Pioneer Valley Life Sciences InstituteSpringfieldUSA
  2. 2.Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstUSA
  3. 3.Department of BiologyUniversity of MassachusettsAmherstUSA
  4. 4.Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations