Skip to main content

OxPhos Defects and Their Role in Cancer Initiation and Progression

  • Chapter
  • First Online:
Book cover Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy

Abstract

This chapter provides a brief overview of the oxidative phosphorylation (OxPhos) carried out by five multimeric enzyme complexes. The biogenesis of the OxPhos system is very complicated because of its dual genetic origin and involvement of a large number of genes, whose products are made at two different locations, the cytosol and mitochondrial matrix. Both genetic and nongenetic factors can cause OxPhos deficiency, which can alter signaling pathways such as p53, AKT, and NF-κB and thereby promote cancer development. A model for tumorigenesis due to OxPhos deficiency is described. This model suggests that functional decline of mitochondria with age may cause p53 suppression and thereby increase the incidence of cancer. Phytochemicals can prevent cancer development by improving OxPhos and by alleviating oxidative/redox stress and chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidov M, Crendal F, Grachev S, Seifulla R, Ziegenfus T (2003) Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull Exp Biol Med 136:585–587

    PubMed  CAS  Google Scholar 

  • Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL, Roncador G, Fernandez-Malave E, Chamorro M, Cuezva JM (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2:138–145

    PubMed  Google Scholar 

  • Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    PubMed  CAS  Google Scholar 

  • Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS ONE 6:e24792

    PubMed  CAS  Google Scholar 

  • Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta 1807:1432–1443

    PubMed  CAS  Google Scholar 

  • Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers HJ, Hoefsloot LH, Hermsen MA, Suarez C, Hussain AK, Vriends AH, Hes FJ, Jansen JC, Tops CM, Corssmit EP, de KP, Lenders JW, Cremers CW, Devile P, Dinjens WN, Krijger RR de, Robledo M (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372

    PubMed  CAS  Google Scholar 

  • Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 30:45–51

    Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Bosch M, Mari M, Gros SP, Fernandez-Checa JC, Pol A (2011a) Mitochondrial cholesterol: a connection between caveolin metabolism and disease. Traffic 12:1483–1489

    CAS  Google Scholar 

  • Bosch M, Mari M, Herms A, Fernandez A, Fajardo A, Kassan A, Giralt A, Colel A, Balgoma D, Barbero E, Gonzalez-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gros SP, Garcia-Ruiz C, Perez-Navarro E, Fernandez-Checa JC, Pol A (2011b) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 21:681–686

    CAS  Google Scholar 

  • Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123:2527–2532

    PubMed  CAS  Google Scholar 

  • Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelman BD, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571–583

    PubMed  CAS  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    PubMed  CAS  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    PubMed  CAS  Google Scholar 

  • Briere JJ, Favier J, Benit P, El G V, Lorenzato A, Rabier D, Di Renzo MF, Gimenez-Roqueplo AP, Rustin P (2005) Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet 14:3263–3269

    PubMed  CAS  Google Scholar 

  • Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagolof A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet

    Google Scholar 

  • Campbel AM, Chan SH (2008) Mitochondrial membrane cholesterol the voltage dependent anion channel (VDAC) and the Warburg effect. J Bioenerg Biomembr 40:193–197

    Google Scholar 

  • Cantor JR, Sabatini DM (2012) Cancer cell metabolism one hallmark many faces. Cancer Discov 2:881–898

    PubMed  CAS  Google Scholar 

  • Chandra D, Singh KK (2010) Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta 1807:620–625

    PubMed  Google Scholar 

  • Chen XH, Zhao YP, Xue M, Ji CB, Gao CL, Zhu JG, Qin DN, Kou CZ, Qin XH, Tong ML, Guo XR (2010) TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol Cell Endocrinol 328:63–69

    PubMed  CAS  Google Scholar 

  • Chen PL, Chen CF, Chen Y, Guo XE, Huang CK, Shew JY, Reddick RL, Wallace DC, Le WH (2012a) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene.

    Google Scholar 

  • Chen YC, Taylor EB, Dephoure N, Heo JM, Tonhato A, Papandreou I, Nath N, Denko NC, Gygi SP, Rutter J (2012b) Identification of a protein mediating respiratory supercomplex stability. Cell Metab 15:348–360

    CAS  Google Scholar 

  • Cheng G, Lopez M, Zielonka J, Hauser AD, Joseph J, McAllister D, Rowe JJ, Sug SL, Williams CL, Kalyanaraman B (2011a) Mitochondria-targeted nitroxides exacerbate fluvastatin-mediated cytostatic and cytotoxic effects in breast cancer cells. Cancer Biol Ther 12: 707–717

    CAS  Google Scholar 

  • Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011b) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 108: 8674–8679

    CAS  Google Scholar 

  • Chinnery PF, Elliot HR, Hudson G, Samuels DC, Relton CL (2012) Epigenetics epidemiology and mitochondrial DNA diseases. Int J Epidemiol 41:177–187

    PubMed  Google Scholar 

  • Cho JW, Lee KS, Kim CW (2007) Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 19:469–474

    Google Scholar 

  • Choi SJ, Kim SH, Kang HY, Le J, Bhak JH, Sohn I, Jung SH, Choi YS, Kim HK, Han J, Huh N, Le G, Kim BC, Kim J (2011) Mutational hotspots in the mitochondrial genome of lung cancer. Biochem Biophys Res Commun 407:23–27

    PubMed  CAS  Google Scholar 

  • Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819:1035–1054

    PubMed  CAS  Google Scholar 

  • Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:214–217

    PubMed  CAS  Google Scholar 

  • Clerc P, Polster BM (2012) Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS ONE 7:e34465

    PubMed  CAS  Google Scholar 

  • Compton S, Kim C, Griner NB, Potluri P, Scheffler IE, Sen S, Jerry DJ, Schneider S, Yadava N (2011) Mitochondrial Dysfunction Impairs Tumor Suppressor p53 Expression/Function. J Biol Chem 286:20297–20312

    PubMed  CAS  Google Scholar 

  • Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20:557–569

    PubMed  CAS  Google Scholar 

  • Cuezva JM, Krajewska M, Heredia ML de, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) The bioenergetic signature of cancer a marker of tumor progression. Cancer Res 62:6674–6681

    PubMed  CAS  Google Scholar 

  • Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN (2007) Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett 249:249–255

    PubMed  CAS  Google Scholar 

  • Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K, Tsichlis PN (2005) Tpl2/cot signals activate ERK JNK and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 280:23748–23757

    PubMed  CAS  Google Scholar 

  • DeFrancesco L, Scheffler IE, Bissel MJ (1976) A respiration-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem 251:4588–4595

    PubMed  CAS  Google Scholar 

  • DeFrancesco L, Werntz D, Scheffler IE (1975) Conditionally lethal mutations in chinese hamster cells Characterization of a cell line with a possible defect in the Krebs cycle. J Cell Physiol 85:293–305

    PubMed  CAS  Google Scholar 

  • Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094

    PubMed  CAS  Google Scholar 

  • Ditta G, Soderberg K, Landy F, Scheffler IE (1976) The selection of Chinese hamster cells deficient in oxidative energy metabolism Somatic. Cell Genet 2:331–344

    Google Scholar 

  • Donnelly M, Scheffler IE (1976) Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J Cell Physiol 89:39–51

    PubMed  CAS  Google Scholar 

  • Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hil BG, Zhang J, Landar A, Darley-Usmar VM (2011) Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 51:1621–1635

    PubMed  CAS  Google Scholar 

  • Erb M, Hoffmann-Enger B, Deppe H, Soeberdt M, Haefeli RH, Rummey C, Feurer A, Gueven N (2012) Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS ONE 7:e36153

    PubMed  CAS  Google Scholar 

  • Fatemie S, Goh J, Pettan-Brewer C, Ladiges W (2012) Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells. Pathobiol Aging Age Relat Dis 2

    Google Scholar 

  • Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ (2007) Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci. U S A 104: 16633–16638

    PubMed  CAS  Google Scholar 

  • Finley LW, Carracedo A, Le J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19:416–428

    PubMed  CAS  Google Scholar 

  • Fosslien E (2008) Cancer morphogenesis role of mitochondrial failure. Ann Clin Lab Sci. 38:307–329

    PubMed  CAS  Google Scholar 

  • Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523

    Google Scholar 

  • Gaona-Gaona L, Molina-Jijon E, Tapia E, Zazueta C, Hernandez-Pando R, Calderon-Oliver M, Zarco-Marquez G, Pinzon E, Pedraza-Chaverri J (2011) Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology 286:20–27

    Google Scholar 

  • Garcia-Ruiz I, Rodriguez-Juan C, az-Sanjuan T, del HP, Colina F, Munoz-Yague T, Solis-Herruzo JA (2006) Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 44:581–591

    PubMed  CAS  Google Scholar 

  • Gasparre G, Hervouet E, de LE, Demont J, Pennisi LF, Colombel M, Mege-Lechevallier F, Scoazec JY, Bonora E, Smeets R, Smeitink J, Lazar V, Lespinasse J, Giraud S, Godinot C, Romeo G, Simonnet H (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17:986–995

    PubMed  CAS  Google Scholar 

  • Gasparre G, Iommarini L, Porcelli AM, Lang M, Ferri GG, Kurelac I, Zuntini R, Mariani E, Pennisi LF, Pasquini E, Pasquinelli G, Ghelli A, Bonora E, Ceccarelli C, Rugolo M, Salfi N, Romeo G, Carelli V (2009) An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Hum Mutat 30:391–396

    PubMed  CAS  Google Scholar 

  • Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl. Acad. Sci. U. S. A 104:9001–9006

    PubMed  CAS  Google Scholar 

  • Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106

    PubMed  CAS  Google Scholar 

  • Gochhait S, Bhat A, Sharma S, Singh YP, Gupta P, Bamezai RN (2008) Concomitant presence of mutations in mitochondrial genome and p53 in cancer development—a study in north Indian sporadic breast and esophageal cancer patients. Int J Cancer 123:2580–2586

    PubMed  CAS  Google Scholar 

  • Goel A, Boland CR, Chauhan DP (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172:111–118

    Google Scholar 

  • Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC. Cancer 11:191

    PubMed  CAS  Google Scholar 

  • Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, Han JH, Lowstuter K, Longmate J, Sommer SS, Weitzel JN (2009) Beyond Li Fraumeni Syndrome clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256

    PubMed  CAS  Google Scholar 

  • Guan S, Feng H, Song B, Guo W, Xiong Y, Huang G, Zhong W, Huo M, Chen N, Lu J, Deng X (2011) Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int Immunopharmacol 11:2194–2199

    Google Scholar 

  • Gudkov AV, Gurova KV, Komarova EA (2011) Inflammation and p53: A Tale of Two Stresses. Genes Cancer 2:503–516

    PubMed  CAS  Google Scholar 

  • Guo J, Zheng L, Liu W, Wang X, Wang Z, Wang Z, French AJ, Kang D, Chen L, Thibodeau SN, Liu W (2011) Frequent truncating mutation of TFAM induces mitochondrial DNA depletion and apoptotic resistance in microsatellite-unstable colorectal cancer. Cancer Res 71:2978–2987

    PubMed  CAS  Google Scholar 

  • Haigis MC, Deng CX, Finley LW, Kim HS, Gius D (2012) SIRT3 is a mitochondrial tumor suppressor a scientific tale that connects aberrant cellular ROS the Warburg effect and carcinogenesis. Cancer Res 72:2468–2472

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer an inflammatory issue. Ann N Y Acad Sci 1229:45–52

    PubMed  CAS  Google Scholar 

  • Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012a) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533

    CAS  Google Scholar 

  • Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012b) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533

    CAS  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    PubMed  CAS  Google Scholar 

  • Hedskog L, Zhang S, Ankarcrona M (2012) Strategic role for mitochondria in Alzheimer’s disease and cancer. Antioxid Redox Signal 16:1476–1491

    PubMed  CAS  Google Scholar 

  • Her I, Buchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383

    Google Scholar 

  • Hinkal G, Parikh N, Donehower LA (2009) Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS ONE 4:e6654

    PubMed  Google Scholar 

  • Hollerhage M, Matusch A, Champy P, Lombes A, Ruberg M, Oertel WH, Hoglinger GU (2009) Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 220:133–142

    PubMed  Google Scholar 

  • Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham SD Jr, Gramlich T, Wallace DC (1996) Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes. Cancer 15:95–101

    CAS  Google Scholar 

  • Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J (2011) Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS ONE 6:e23401

    PubMed  CAS  Google Scholar 

  • Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, Gonzalez-Baron M, Cuezva JM (2005) Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26:2095–2104

    PubMed  CAS  Google Scholar 

  • Jain SK, Rains J, Croad J, Larson B, Jones K (2009) Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 11:241–249

    Google Scholar 

  • Jekabsons MB, Nicholls DG (2004) In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 279:32989–33000

    PubMed  CAS  Google Scholar 

  • Jiang L, He S, Sun C, Pan Y (2012) Selective (1)O(2) quenchers, oligostilbenes, from Vitis wilsonae: structural identification and biogenetic relationship. Phytochemistry 77:294–303

    Google Scholar 

  • Johnson RF, Witzel II, Perkins ND (2011) p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res 71:5588–5597

    PubMed  CAS  Google Scholar 

  • Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25:400–410, 413

    Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    PubMed  CAS  Google Scholar 

  • Keijer J, Bekkenkamp-Grovenstein M, Venema D, Dommels YE (2011) Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta 1807:697–706

    PubMed  CAS  Google Scholar 

  • Kellof GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’shaughnessy J, Guyton KZ, Mankof DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Google Scholar 

  • Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8:66–69

    PubMed  CAS  Google Scholar 

  • Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Co IF, Klopstock T, Chinnery PF (2009) Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132:2317–2326

    PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11:325–337

    PubMed  CAS  Google Scholar 

  • Kulawiec M, Safina A, Desouki MM, Stil I, Matsui S, Bakin A, Singh KK (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther 7:1732–1743

    PubMed  CAS  Google Scholar 

  • Kunst HP, Rutten MH, Monnink JP de, Hoefsloot LH, Timmers HJ, Marres HA, Jansen JC, Kremer H, Bayley JP, Cremers CW (2011) SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 17:247–254

    PubMed  CAS  Google Scholar 

  • Kuo JJ, Chang HH, Tsai TH, Lee TY (2012) Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med 30:673–679

    Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Google Scholar 

  • Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DM, Banerje S, Das K, Sa G, Das T (2009) Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis

    Google Scholar 

  • Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, White K, Kwok PY, Pawlikowska L, Tranah GJ (2012) Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res 72:686–695

    PubMed  CAS  Google Scholar 

  • Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnel JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942

    PubMed  CAS  Google Scholar 

  • Le SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 72:3607–3617

    Google Scholar 

  • Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L, Bromberg J (2010) Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 12:R80

    PubMed  Google Scholar 

  • Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344

    PubMed  CAS  Google Scholar 

  • Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, Li F, Liang D, Liu Z, Zhang X, Cao Y, Zhang N, Yang Z (2013) Salidroside attenuates inflammatory responses by suppressing nuclear factor-kappaB and mitogen activated protein kinases activation in lipopolysaccharideinduced mastitis in mice. Inflamm Res 62:9–15

    Google Scholar 

  • Li F, Tang H, Xiao F, Gong J, Peng Y, Meng X (2011) Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules 16:9912–9924

    Google Scholar 

  • Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3:9

    PubMed  CAS  Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    PubMed  CAS  Google Scholar 

  • Lumini-Oliveira J, Magalhaes J, Pereira CV, Moreira AC, Oliveira PJ, Ascensao A (2011) Endurance training reverts heart mitochondrial dysfunction permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion 11:54–63

    PubMed  CAS  Google Scholar 

  • Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89:237–245

    CAS  Google Scholar 

  • Mariappan N, Elks CM, Haque M, Francis J (2012) Interaction of TNF with Angiotensin II Contributes to Mitochondrial Oxidative Stress and Cardiac Damage in Rats. PLoS ONE 7:e46568

    PubMed  CAS  Google Scholar 

  • Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De SE, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13:1272–1279

    PubMed  CAS  Google Scholar 

  • Mayr JA, Meierhofer D, Zimmerman F, Feichtinger R, Kogler C, Ratschek M, Schmeller N, Sperl W, Kofler B (2008) Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res 14:2270–2275

    PubMed  CAS  Google Scholar 

  • Metallo CM, Gameiro PA, Bel EL, Mattaini KR, Yang J, Hiller K, Jewel CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    CAS  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    PubMed  CAS  Google Scholar 

  • Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V (2011) Mitochondrial protein import and the genesis of steroidogenic mitochondria. Mol Cell Endocrinol 336:70–79

    PubMed  CAS  Google Scholar 

  • Mito T, Kikkawa Y, Shimizu A, Hashizume O, Katada S, Imanishi H, Ota A, Kato Y, Nakada K, Hayashi J (2013) Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS ONE 8:e55789

    PubMed  CAS  Google Scholar 

  • Modica-Napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7:121–131

    CAS  Google Scholar 

  • Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch G, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 25:3646–3660

    Google Scholar 

  • Mukherje S, Das SK (2012) Translocator protein (TSPO) in breast cancer. Curr. Mol Med 12:443–457

    Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388

    CAS  Google Scholar 

  • Ni Y, He X, Chen J, Moline J, Mester J, Orlof MS, Ringel MD, Eng C (2012) Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 21:300–310

    PubMed  CAS  Google Scholar 

  • Nicholls DG (2008) Forty years of Mitchell’s proton circuit From little grey books to little grey cells. Biochim Biophys Acta 1777:550–556

    PubMed  CAS  Google Scholar 

  • Niture SK, Kaspar JW, Shen J, Jaiswal AK (2010) Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244:37–42

    PubMed  CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    PubMed  CAS  Google Scholar 

  • Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target Magnum overview. IUBMB Life 65:273–281

    PubMed  CAS  Google Scholar 

  • Park J, Kusminski CM, Chua SC, Scherer PE (2010) Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol 177:3133–3144

    PubMed  CAS  Google Scholar 

  • Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y (2009) A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18:1578–1589

    PubMed  CAS  Google Scholar 

  • Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunket W, Huang P (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175:913–923

    PubMed  CAS  Google Scholar 

  • Petros JA, Bauman AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hal J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshal FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102:719–724

    PubMed  CAS  Google Scholar 

  • Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9:1032–1046

    PubMed  CAS  Google Scholar 

  • Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, Pennisi F, Morra I, Ciccarelli E, Melcarne A, Bartoletti-Stella A, Salfi N, Tallini G, Martinuzzi A, Carelli V, Attimonelli M, Rugolo M, Romeo G, Gasparre G (2009) The genetic and metabolic signature of oncocytic transformation implicates HIF1{alpha} destabilization. Hum Mol Genet 19:1019–1032

    PubMed  Google Scholar 

  • Potluri P, Davila A, Ruiz-Pesini E, Mishmar D, O’Hearn S, Hancock S, Simon M, Scheffler IE, Wallace DC, Procaccio V (2009) A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 96:189–195

    PubMed  CAS  Google Scholar 

  • Remels AH, Gosker HR, Schrauwen P, Hommelberg PP, Sliwinski P, Polkey M, Galdiz J, Wouters EF, Langen RC, Schols AM (2010) TNF-alpha impairs regulation of muscle oxidative phenotype: implications for cachexia. FASEB J 24:5052–5062

    PubMed  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-kappaB signaling: impact on cancer and aging process. J Cell Physiol 224:1–6

    Google Scholar 

  • Samavati L, Le I, Mathes I, Lottspeich F, Hutteman M (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144

    PubMed  CAS  Google Scholar 

  • Sampey BP, Freemerman AJ, Zhang J, Kuan PF, Galanko JA, O’Connel TM, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Newgard CB, Brauer HA, Troester MA, Makowski L (2012) Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE 7: e38812

    Google Scholar 

  • Sanchez-Cenizo L, Formentini L, Aldea M, Ortega AD, Garcia-Huerta P, Sanchez-Arago M, Cuezva JM (2010) The up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the mitochondrial H -ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem

    Google Scholar 

  • Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, Leboeuf SE, Gay LJ, Yagi T, Felding-Haberman B (2013) Mitochondrial complex I activity and NAD /NADH balance regulate breast cancer progression. J Clin Invest 123:1068–1081

    PubMed  CAS  Google Scholar 

  • Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    PubMed  CAS  Google Scholar 

  • Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y (2011) Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 20:4605–4616

    PubMed  CAS  Google Scholar 

  • Shirakami Y, Shimizu M, Moriwaki H (2012) Cancer chemoprevention with green tea catechins from bench to bed. Curr Drug Targets 13:1842–1857

    PubMed  CAS  Google Scholar 

  • Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M (2009) Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516–524

    PubMed  CAS  Google Scholar 

  • Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restal C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035–2043

    PubMed  CAS  Google Scholar 

  • Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897

    PubMed  CAS  Google Scholar 

  • Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K, Kawachi H, Watanabe K (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 57:1649–1659

    Google Scholar 

  • Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM (2011) Exercise Training Increases Mitochondrial Biogenesis in the Brain. J Appl Physiol

    Google Scholar 

  • Sun W, Zhou S, Chang SS, McFate T, Verma A, Califano JA (2009) Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 15:476–484

    PubMed  CAS  Google Scholar 

  • Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, Corral-Escariz M, Soro I, Lopez-Bernardo E, Perales-Clemente E, Martinez-Ruiz A, Enriquez JA, Aragones J, Cadenas S, Landazuri MO (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14:768–779

    PubMed  CAS  Google Scholar 

  • Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24:7391–7393

    PubMed  CAS  Google Scholar 

  • Theodoratou E, Din FV, Farrington SM, Cetnarskyj R, Barnetson RA, Porteous ME, Dunlop MG, Campbel H, Tenesa A (2010) Association between common mtDNA variants and all-cause or colorectal cancer mortality. Carcinogenesis 31:296–301

    PubMed  CAS  Google Scholar 

  • Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals–promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120:451–458

    PubMed  CAS  Google Scholar 

  • Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM (2010) The global burden of cancer: priorities for prevention. Carcinogenesis 31:100–110

    PubMed  CAS  Google Scholar 

  • Tormos KV, Chandel NS (2010) Inter-connection between mitochondria and HIFs 4. J Cell Mol Med 14:795–804

    PubMed  CAS  Google Scholar 

  • Tornatore L, Thotakura AK, Bennet J, Moretti M, Franzoso G (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22:557–566

    PubMed  CAS  Google Scholar 

  • Tosetti F, Noonan DM, Albini A (2009) Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals. Int J Cancer 125:1997–2003

    PubMed  CAS  Google Scholar 

  • Tseng LM, Yin PH, Yang CW, Tsai YF, Hsu CY, Chi CW, Le HC (2011) Somatic mutations of the mitochondrial genome in human breast cancers. Genes Chromosomes. Cancer 50:800–811

    CAS  Google Scholar 

  • van WC, Sun Y, Cheung HS, Moraes CT (2006) Oxidative phosphorylation dysfunction modulates expression of extracellular matrix–remodeling genes and invasion. Carcinogenesis 27:409–418

    Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grim J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    PubMed  CAS  Google Scholar 

  • Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL (2012) Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol

    Google Scholar 

  • Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening. Antioxid Redox Signal 13:1649–1663

    PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases aging and cancer a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    PubMed  CAS  Google Scholar 

  • Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409

    CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    PubMed  CAS  Google Scholar 

  • Wat IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827

    Google Scholar 

  • Weber WA, Schwaiger M, Avril N (2000) Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol 27:683–687

    PubMed  CAS  Google Scholar 

  • Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcet P, Lesnefsky EJ, Larner AC (2009a) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    CAS  Google Scholar 

  • Wegrzyn P, Yarwood SJ, Fiegler N, Bzowska M, Koj A, Mizgalska D, Malicki S, Pajak M, Kasza A, Kachamakova-Trojanowska N, Bereta J, Jura J, Jura J (2009b) Mimitin a novel cytokine-regulated mitochondrial protein. BMC Cell Biol 10:23

    Google Scholar 

  • Xu HN, Nioka S, Glickson JD, Chance B, Li LZ (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15:036010

    PubMed  Google Scholar 

  • Xu HN, Tchou J, Chance B, Li LZ (2013) Imaging the redox States of human breast cancer core biopsies. Adv Exp Med Biol 765:343–349

    PubMed  CAS  Google Scholar 

  • Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE (2002) Species-specific and mutant MWFE proteins Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 277:21221–21230

    PubMed  CAS  Google Scholar 

  • Yadava N, Houchens T, Potluri P, Scheffler IE (2004) Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 279:12406–12413

    PubMed  CAS  Google Scholar 

  • Yadava N, Schneider SS, Jerry DJ, Kim C (2013) Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia 18:75–87

    Google Scholar 

  • Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D (2010) Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61 L). Cancer Biol Ther 9

    Google Scholar 

  • Yang J, Staples O, Thomas LW, Briston T, Robson M, Poon E, Simoes ML, El-Emir E, Buffa FM, Ahmed A, Annear NP, Shukla D, Pedley BR, Maxwel PH, Harris AL, Ashcroft M (2012) Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest 122:600–611

    PubMed  CAS  Google Scholar 

  • Zhong H, Xin H, Wu LX, Zhu YZ (2010) Salidroside attenuates apoptosis in ischemic cardiomyocytes a mechanism through a mitochondria-dependent pathway. J Pharmacol Sci 114:399–408

    PubMed  CAS  Google Scholar 

  • Zimmerman FA, Mayr JA, Neureiter D, Feichtinger R, Alinger B, Jones ND, Eder W, Sperl W, Kofler B (2009) Lack of complex I is associated with oncocytic thyroid tumours. Br J Cancer 100:1434–1437

    Google Scholar 

  • Zimmerman FA, Mayr JA, Feichtinger R, Neureiter D, Lechner R, Koegler C, Ratschek M, Rusmir H, Sargsyan K, Sperl W, Kofler B (2011) Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front Biosci (Elite Ed) 3:315–325

    Google Scholar 

Download references

Funding

This work was supported by start-up and translational funds from CEAR at the PVLSI supported by an award (A00000000004448) from Massachusetts Technology Collaborative as administrator of the John Adams Innovation Institute to N.Y. We also thank Seahorse Bioscience Inc. for their in-kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Yadava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yadava, N., Khalil, A., Schneider, S. (2013). OxPhos Defects and Their Role in Cancer Initiation and Progression. In: Chandra, D. (eds) Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9326-6_1

Download citation

Publish with us

Policies and ethics