Skip to main content

Sex Differences and Diabetes Mellitus in Cardiovascular Function

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

  • 7260 Accesses

Abstract

Diabetes is an increasingly widespread epidemic disease, with type 2 diabetes accounting for most of the cases. Cardiovascular complications are the most common cause of morbidity and mortality in diabetic patients. Some studies have also reported that gender difference has a profound impact in the pathogenesis, development, and severity of cardiovascular diseases in diabetic patients, although this assertion was not documented and reviewed in detail. Indeed, cardiovascular diseases are the leading cause of death among women in developed countries. Similarly, results of human and animal studies have shown that sex differences cannot be ruled out in diabetes-induced cardiovascular abnormalities. The proposed underlying mechanisms of gender-related differences in response to different stimuli in healthy and diabetic subjects are the distinction in regulation of cytosolic Ca2+ levels and the varied rate of oxidative damage. The female rat myocardium is more resistant to diabetes-induced cardiac dysfunction than that of male rats, but this female advantage is canceled in postmenopausal individuals. Therefore, it is possible to suggest that estrogen can exert protective effects against diabetes through modulation of altered Ca2+ dynamics and reduction of oxidative damage in the heart. Although the current findings provide convincing evidence about the sex-related differences in diabetes-induced cardiovascular pathology, further studies are needed to clarify the underlying mechanisms of this distinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capasso JM, Remily RM, Smith RH et al (1983) Sex differences in myocardial contractility in the rat. Basic Res Cardiol 78(2):156–171

    Article  CAS  PubMed  Google Scholar 

  2. Brown RA, Filipovich P, Walsh MF et al (1996) Influence of sex, diabetes and ethanol on intrinsic contractile performance of isolated rat myocardium. Basic Res Cardiol 91(5):353–360

    CAS  PubMed  Google Scholar 

  3. Curl CL, Wendt IR, Kotsanas G (2001) Effects of gender on intracellular [Ca2+]i in rat cardiac myocytes. Pflugers Arch 441(5):709–716

    Article  CAS  PubMed  Google Scholar 

  4. Shimoni Y, Liu XF (2003) Sex differences in the modulation of K+ currents in diabetic rat cardiac myocytes. J Physiol 550:401–412

    Article  CAS  PubMed  Google Scholar 

  5. Dahlberg ST (1990) Gender difference in the risk factors for sudden cardiac death. Cardiology 77(Suppl 2):31–40

    Article  PubMed  Google Scholar 

  6. Gadrin J, Wagenknecht L, Anton-Culver H et al (1995) Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. Circulation 92:380–387

    Article  Google Scholar 

  7. Yaras N, Ugur M, Ozdemir S et al (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088

    Article  CAS  PubMed  Google Scholar 

  8. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Turan B (2010) Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol 11:819–836

    Article  CAS  PubMed  Google Scholar 

  10. Vassort G, Turan B (2010) Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol 10:73–86

    Article  CAS  PubMed  Google Scholar 

  11. Bidasee KR, Nallani K, Besch HR et al (2003) Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther 305:989–998

    Article  CAS  PubMed  Google Scholar 

  12. Dhalla NS, Liu X, Panagia V et al (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247

    Article  CAS  PubMed  Google Scholar 

  13. Aydemir M, Ozturk N, Dogan S et al (2012) Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia. Biol Trace Elem Res 148:216–223

    Article  CAS  PubMed  Google Scholar 

  14. Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14:149–153

    Article  CAS  PubMed  Google Scholar 

  15. Schwertz DW, Beck JM, Kowalski JM et al (2004) Sex differences in the response of rat heart ventricle to calcium. Biol Res Nurs 5:286–298

    Article  PubMed  Google Scholar 

  16. Ren J, Ceylan-Isik AF (2004) Diabetic cardiomyopathy: do women differ from men? Endocrine 25:73–83

    Article  CAS  PubMed  Google Scholar 

  17. Pham TV, Rosen MR (2002) Sex, hormones, and repolarization. Cardiovasc Res 53:740–751

    Article  CAS  PubMed  Google Scholar 

  18. Cai L, Kang Y (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1:181–193

    Article  CAS  PubMed  Google Scholar 

  19. Fein FS, Sonnenblick EH (1994) Diabetic cardiomyopathy. Cardiovasc Drugs Ther 8:65–73

    Article  CAS  PubMed  Google Scholar 

  20. Barros RPA, Machado UF, Gustafsson JA (2006) Estrogen receptors: new players in diabetes mellitus. Trends Mol Med 12:425–431

    Article  CAS  PubMed  Google Scholar 

  21. Fishbein H, Palumbo PJ (1995) Acute metabolic complications in diabetes. In: National Diabetes Data group (ed) Diabetes in America, 2nd edn. DIANE Publishing Co., Darby, PA, pp 283–291

    Google Scholar 

  22. Faich GA, Fishbein HA, Ellis SE (1983) The epidemiology of diabetic acidosis: a population-based study. Am J Epidemiol 117:551–558

    CAS  PubMed  Google Scholar 

  23. Icks A, Trautner C, Haastert B et al (1997) Blindness due to diabetes: population-based age- and sex-specific incidence rates. Diabet Med 14:571–575

    Article  CAS  PubMed  Google Scholar 

  24. Perreault L, Ma Y, Dagogo-Jack S et al (2008) Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care 31:1416–1421

    Article  CAS  PubMed  Google Scholar 

  25. Hayes AJ, Leal J, Kelman CW et al (2011) Risk equations to predict life expectancy of people with type 2 diabetes mellitus following major complications: a study from Western Australia. Diabet Med 28:428–435

    Article  CAS  PubMed  Google Scholar 

  26. Johnson BE, Johnson CA (2001) Cardiovascular disease and differences between the sexes. Am Fam Physician 63:1290–1292

    CAS  PubMed  Google Scholar 

  27. Huynh K, McMullen JR, Julius TL et al (2010) Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy. Diabetes 59:1512–1520

    Article  CAS  PubMed  Google Scholar 

  28. Khong FL, Zhang Y, Edgley AJ et al (2011) 3′,4′-Dihydroxyflavonol antioxidant attenuates diastolic dysfunction and cardiac remodeling in streptozotocin-induced diabetic m(Ren2)27 rats. PLoS One 6:e22777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tian C, Shao CH, Moore CJ et al (2011) Gain of function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc Res 91:300–309

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Ma J, Zhu H et al (2011) Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 60:2985–2994

    Article  CAS  PubMed  Google Scholar 

  31. Hoit BD, Castro C, Bultron G et al (1999) Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 5:324–333

    Article  CAS  PubMed  Google Scholar 

  32. Radovits T, Korkmaz S, Loganathan S et al (2009) Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 297:H125–H133

    Article  CAS  PubMed  Google Scholar 

  33. Hadour G, Ferrera R, Sebbag L et al (1998) Improved myocardial tolerance to ischaemia in the diabetic rabbit. J Mol Cell Cardiol 30:1869–1875

    Article  CAS  PubMed  Google Scholar 

  34. Sharma V, Sharma A, Saran V et al (2011) β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions. Eur J Pharmacol 657:117–125

    Article  CAS  PubMed  Google Scholar 

  35. Shimabukuro M, Higa S, Shinzato T et al (1996) Cardioprotective effects of troglitazone in streptozotocin-induced diabetic rats. Metabolism 45:1168–1173

    Article  CAS  PubMed  Google Scholar 

  36. Tuncay E, Seymen AA, Tanriverdi E et al (2007) Gender related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction. Mol Cell Biochem 304:255–263

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues B, McNeill JH (1987) Comparison of cardiac function in male and female diabetic rats. Gen Pharmacol 18:421–423

    Article  CAS  PubMed  Google Scholar 

  38. Yaras N, Tuncay E, Purali N et al (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Physiol Heart Circ Physiol 293:H3584–H3592

    Article  CAS  PubMed  Google Scholar 

  39. Ozdemir S, Ugur M, Gürdal H et al (2005) Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 435:166–174

    Article  CAS  PubMed  Google Scholar 

  40. Dillmann WH (1980) Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29:579–582

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Takeda N, Dhalla NS (1996) Troponin I phosphorylation in heart homogenate from diabetic rat. Biochim Biophys Acta 1316:78–84

    Article  PubMed  Google Scholar 

  42. Ozturk N, Yaras N, Ozmen A et al (2013) Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr 45:343–352

    Google Scholar 

  43. Ayaz M, Can B, Ozdemir S et al (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89:215–226

    Article  CAS  PubMed  Google Scholar 

  44. Yaras N, Sariahmetoglu M, Bilginoglu A et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174–1184

    Article  CAS  PubMed  Google Scholar 

  45. Ho KK, Pinsky JL, Kannel WB et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:6A–13A

    Article  CAS  PubMed  Google Scholar 

  46. Marra G, Cotroneo P, Pitocco D et al (2002) Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: a case for gender difference. Diabetes Care 25:370–375

    Article  PubMed  Google Scholar 

  47. Barrett-Connor E, Bush TL (1991) Estrogen and coronary heart disease in women. JAMA 265:1861–1867

    Article  CAS  PubMed  Google Scholar 

  48. Zhou H, Li YJ, Wang M et al (2011) Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes. Acta Pharmacol Sin 32:999–1008

    Article  CAS  PubMed  Google Scholar 

  49. Khalid AM, Hafstad AD, Larsen TS et al (2011) Cardioprotective effect of the PPAR ligand tetradecylthioacetic acid in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 300:H2116–H2122

    Article  CAS  PubMed  Google Scholar 

  50. Semeniuk LM, Kryski AJ, Severson DL (2002) Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 283:H976–H982

    CAS  PubMed  Google Scholar 

  51. Lakshmanan AP, Harima M, Sukumaran V et al (2012) Modulation of AT-1R/AMPK-MAPK cascade plays crucial role for the pathogenesis of diabetic cardiomyopathy in transgenic type 2 diabetic (Spontaneous Diabetic Torii) rats. Biochem Pharmacol 83:653–660

    Article  CAS  PubMed  Google Scholar 

  52. Kim SK, Zhao ZS, Lee YJ et al (2003) Left-ventricular diastolic dysfunction may be prevented by chronic treatment with PPAR-alpha or -gamma agonists in a type 2 diabetic animal model. Diabetes Metab Res Rev 19:487–493

    Article  CAS  PubMed  Google Scholar 

  53. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    Article  CAS  PubMed  Google Scholar 

  54. Hafstad AD, Solevåg GH, Severson DL et al (2006) Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol 290:H1763–H1769

    Article  CAS  PubMed  Google Scholar 

  55. Wang P, Chatham JC (2004) Onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function after ischemia in the isolated perfused heart. Am J Physiol Endocrinol Metab 286:E725–E736

    Article  CAS  PubMed  Google Scholar 

  56. Cárdenas G, Carlos Torres J, Zamora J et al (2006) Isolated heart function after ischemia and reperfusion in sucrose-fed rats: influence of gender and treatment. Clin Exp Hypertens 28:85–107

    Article  PubMed  Google Scholar 

  57. Merri M, Benhorin J, Alberti M et al (1989) Electrocardiographic quantitation of ventricular repolarization. Circulation 80:1301–1308

    Article  CAS  PubMed  Google Scholar 

  58. Carroll JD, Carroll EP, Feldman T et al (1992) Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86:1099–1107

    Article  CAS  PubMed  Google Scholar 

  59. Hayward CS, Kalnins WV, Kelly RP (2001) Gender-related differences in left ventricular chamber function. Cardiovasc Res 49:340–350

    Article  CAS  PubMed  Google Scholar 

  60. Schaible TF, Scheuer J (1984) Comparison of heart function in male and female rats. Basic Res Cardiol 79:402–412

    Article  CAS  PubMed  Google Scholar 

  61. Schwertz DW, Vizgirda V, Solaro RJ et al (1999) Sexual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem 200:143–153

    Article  CAS  PubMed  Google Scholar 

  62. Forman DE, Cittadini A, Azhar G et al (1997) Cardiac morphology and function in senescent rats: gender-related differences. J Am Coll Cardiol 30:1872–1877

    Article  CAS  PubMed  Google Scholar 

  63. Gardner JD, Brower GL, Janicki JS (2002) Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail 8:101–107

    Article  PubMed  Google Scholar 

  64. Grady D, Rubin SM, Petitti DB et al (1992) Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 117:1016–1037

    Article  CAS  PubMed  Google Scholar 

  65. Grohé C, Kahlert S, Löbbert K et al (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107–112

    Article  PubMed  Google Scholar 

  66. Jiang C, Poole-Wilson PA, Sarrel PM et al (1992) Effect of 17 beta-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br J Pharmacol 106:739–745

    Article  CAS  PubMed  Google Scholar 

  67. Leblanc N, Chartier D, Gosselin H et al (1998) Age and gender differences in excitation-contraction coupling of the rat ventricle. J Physiol 511:533–548

    Article  CAS  PubMed  Google Scholar 

  68. Johnson BD, Zheng W, Korach KS et al (1997) Increased expression of the cardiac L-type calcium channel in estrogen receptor-deficient mice. J Gen Physiol 110:135–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sitzler G, Lenz O, Kilter H et al (1996) Investigation of the negative inotropic effects of 17 beta-oestradiol in human isolated myocardial tissues. Br J Pharmacol 119:43–48

    Article  CAS  PubMed  Google Scholar 

  70. Meyer R, Linz KW, Surges R et al (1998) Rapid modulation of L-type calcium current by acutely applied oestrogens in isolated cardiac myocytes from human, guinea-pig and rat. Exp Physiol 83:305–321

    CAS  PubMed  Google Scholar 

  71. Tuncay E, Seymen AA, Sam P et al (2009) Effects of beta-adrenergic receptor blockers on cardiac function: a comparative study in male versus female rats. Can J Physiol Pharmacol 87:310–317

    Article  CAS  PubMed  Google Scholar 

  72. Chu SH, Sutherland K, Beck J et al (2005) Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci 76:2735–2749

    Article  CAS  PubMed  Google Scholar 

  73. Chen J, Petranka J, Yamamura K et al (2003) Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 285:H2657–H2662

    CAS  PubMed  Google Scholar 

  74. Wattanapermpool J, Riabroy T, Preawnim S (2000) Estrogen supplement prevents the calcium hypersensitivity of cardiac myofilaments in ovariectomized rats. Life Sci 66:533–543

    Article  CAS  PubMed  Google Scholar 

  75. Ceylan-Isik AF, LaCour KH, Ren J (2006) Gender disparity of streptozotocin-induced intrinsic contractile dysfunction in murine ventricular myocytes: role of chronic activation of Akt. Clin Exp Pharmacol Physiol 33:102–108

    Article  CAS  PubMed  Google Scholar 

  76. Schwanke ML, Dutta K, Podolin DA et al (2006) Cardiomyocyte dysfunction in insulin-resistant rats: a female advantage. Diabetologia 49:1097–1105

    Article  CAS  PubMed  Google Scholar 

  77. Fiordaliso F, Li B, Latini R et al (2000) Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent. Lab Invest 80:513–527

    Article  CAS  PubMed  Google Scholar 

  78. Sechi LA, Griffin CA, Schambelan M (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43:1180–1184

    Article  CAS  PubMed  Google Scholar 

  79. Dostal DE (2000) The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul Pept 91:1–11

    Article  CAS  PubMed  Google Scholar 

  80. Nickenig G, Harrison DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis. Part II: AT(1) receptor regulation. Circulation 105:530–536

    Article  CAS  PubMed  Google Scholar 

  81. Ozdemir S, Tandogan B, Ulusu NN et al (2009) Angiotensin II receptor blockage prevents diabetes-induced oxidative damage in rat heart. Folia Biol (Praha) 55:11–16

    CAS  Google Scholar 

  82. Privratsky JR, Wold LE, Sowers JR et al (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 42:206–212

    Article  CAS  PubMed  Google Scholar 

  83. Gassanov N, Brandt MC, Michels G et al (2006) Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium 39:175–186

    Article  CAS  PubMed  Google Scholar 

  84. Hanatani A, Yoshiyama M, Takeuchi K et al (1998) Angiotensin II type 1-receptor antagonist candesartan cilexitil prevents left ventricular dysfunction in myocardial infarcted rats. Jpn J Pharmacol 78:45–54

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa T, Kajiwara H, Kurihara S (1999) Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium. Am J Physiol 277:H2185–H2194

    CAS  PubMed  Google Scholar 

  86. Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J et al (1997) Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40:647–653

    Article  CAS  PubMed  Google Scholar 

  87. Brown RA, Walsh MF, Ren J (2001) Influence of gender and diabetes on vascular and myocardial contractile function. Endocr Res 27:399–408

    Article  CAS  PubMed  Google Scholar 

  88. Ceylan-Isik AF, LaCour KH, Ren J (2006) Sex difference in cardiomyocyte function in normal and metallothionein transgenic mice: the effect of diabetes mellitus. J Appl Physiol 100:1638–1646

    Article  CAS  PubMed  Google Scholar 

  89. Shimoni Y, Liu XF (2004) Gender differences in ANG II levels and action on multiple K+ current modulation pathways in diabetic rats. Am J Physiol Heart Circ Physiol 287:H311–H319

    Article  CAS  PubMed  Google Scholar 

  90. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26:1589–1596

    Article  CAS  PubMed  Google Scholar 

  91. Strehlow K, Rotter S, Wassmann S et al (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93:170–177

    Article  CAS  PubMed  Google Scholar 

  92. Dominguez C, Ruiz E, Gussinye M et al (1998) Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 21:1736–1742

    Article  CAS  PubMed  Google Scholar 

  93. Santini SA, Marra G, Giardina B et al (1997) Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 46:1853–1858

    Article  CAS  PubMed  Google Scholar 

  94. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham Study. Am J Cardiol 34:29–34

    Article  CAS  PubMed  Google Scholar 

  95. Regitz-Zagrosek V, Lehmkuhl E, Mahmoodzadeh S (2007) Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease. Gend Med 4:S162–S177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semir Ozdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ozdemir, S., Yaras, N., Turan, B. (2014). Sex Differences and Diabetes Mellitus in Cardiovascular Function. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_9

Download citation

Publish with us

Policies and ethics