Aldose Reductase and Diabetic Cardiovascular Disease

  • Mariane Abdillahi
  • Ravichandran RamasamyEmail author
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 9)


Cardiovascular disease is a major cause of morbidity and mortality in patients with diabetes mellitus. Studies by others and ourselves have implicated aldose reductase (AR) as a key player in mediating diabetic cardiovascular complications. Findings by us and others demonstrate that increased flux via AR in diabetics perpetuates increased injury after myocardial infarction, accelerates atherosclerotic lesion formation, and promotes restenosis via multiple mechanisms. Taken together, these findings place AR in the center of biochemical and molecular stresses that characterize the cardiovascular complications of diabetes. Blockade of AR-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in diabetic cardiovascular disease.


Aldose reductase Aldose reductase inhibitor Sorbitol dehydrogenase Reactive oxygen species Advanced glycation end products Protein kinase C Diacyl glycerol 4-Hydroxy nonenal Mitochondrial permeability transition pore Ischemia/reperfusion Malondialdehyde Receptor for advanced glycation end products 



Supported by grants from U.S. National Institutes of Health (HL61783, HL68954, HL60901, AG026467).


  1. 1.
    Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139PubMedCrossRefGoogle Scholar
  2. 2.
    Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90:202–209PubMedCrossRefGoogle Scholar
  4. 4.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMedCrossRefGoogle Scholar
  5. 5.
    Yazaki Y, Isobe M, Takahashi W et al (1999) Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart 81:153–159PubMedGoogle Scholar
  6. 6.
    Neglia D, De Caterina A, Marraccini P et al (2007) Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 293:H3270–H3278PubMedCrossRefGoogle Scholar
  7. 7.
    Davila-Roman VG, Vedala G, Herrero P et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277PubMedCrossRefGoogle Scholar
  8. 8.
    Taegtmeyer H, Stanley WC (2011) Too much or not enough of a good thing? Cardiac glucolipotoxicity versus lipoprotection. J Mol Cell Cardiol 50:2–5PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Rosano GM, Vitale C, Sposato B et al (2003) Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol 2:16PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    McClellan KJ, Plosker GL (1999) Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs 58:143–157PubMedCrossRefGoogle Scholar
  11. 11.
    Dalla-Volta S, Maraglino G, Della-Valentina P et al (1990) Comparison of trimetazidine with nifedipine in effort angina: a double-blind, crossover study. Cardiovasc Drugs Ther 4(suppl 4):853–859PubMedCrossRefGoogle Scholar
  12. 12.
    Lu C, Dabrowski P, Fragasso G et al (1998) Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol 82:898–901PubMedCrossRefGoogle Scholar
  13. 13.
    Bersin RM, Stacpoole PW (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 134:841–855PubMedCrossRefGoogle Scholar
  14. 14.
    Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23:1617–1624PubMedCrossRefGoogle Scholar
  15. 15.
    Layden JD, Malkova D, Nimmo MA (2004) Fat oxidation after acipimox-induced reduction in plasma nonesterified fatty acids during exercise at 0 degrees C and 20 degrees C. Metabolism 53:1131–1135PubMedCrossRefGoogle Scholar
  16. 16.
    Ramasamy R, Oates PJ, Schaefer S (1997) Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 46:292–300PubMedCrossRefGoogle Scholar
  17. 17.
    Trueblood N, Ramasamy R (1998) Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 275:H75–H83PubMedGoogle Scholar
  18. 18.
    Vedantham S, Ananthakrishnan R, Schmidt AM et al (2012) Aldose reductase, oxidative stress and diabetic cardiovascular complications. Cardiovasc Hematol Agents Med Chem 10:234–240PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hers HG (1956) The mechanism of the transformation of glucose in fructose in the seminal vesicles. Biochim Biophys Acta 22:202–203PubMedCrossRefGoogle Scholar
  20. 20.
    Srivastava SK, Ansari NH, Hair GA et al (1984) Aldose and aldehyde reductases in human tissues. Biochim Biophys Acta 800:220–227PubMedCrossRefGoogle Scholar
  21. 21.
    Wermuth B, Burgisser H, Bohren K et al (1982) Purification and characterization of human-brain aldose reductase. Eur J Biochem 127:279–284PubMedCrossRefGoogle Scholar
  22. 22.
    Inagaki K, Miwa I, Okuda J (1982) Affinity purification and glucose specificity of aldose reductase from bovine lens. Arch Biochem Biophys 216:337–344PubMedCrossRefGoogle Scholar
  23. 23.
    Grimshaw CE (1986) Direct measurement of the rate of ring opening of D-glucose by enzyme-catalyzed reduction. Carbohydr Res 148:345–348PubMedCrossRefGoogle Scholar
  24. 24.
    Crosas B, Hyndman DJ, Gallego O et al (2003) Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Biochem J 373:973–979PubMedCrossRefGoogle Scholar
  25. 25.
    Vander Jagt DL, Kolb NS, Vander Jagt TJ et al (1995) Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1249:117–126PubMedCrossRefGoogle Scholar
  26. 26.
    Wetzelberger K, Baba SP, Thirunavukkarasu M et al (2010) Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids. J Biol Chem 285:26135–26148PubMedCrossRefGoogle Scholar
  27. 27.
    Kaneko M, Bucciarelli L, Hwang YC et al (2005) Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann N Y Acad Sci 1043:702–709PubMedCrossRefGoogle Scholar
  28. 28.
    Ramasamy R, Goldberg IJ (2010) Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 106:1449–1458PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33PubMedGoogle Scholar
  30. 30.
    Shinmura K, Bolli R, Liu SQ et al (2002) Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res 91:240–246PubMedCrossRefGoogle Scholar
  31. 31.
    Hwang YC, Sato S, Tsai JY et al (2002) Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J 16:243–245PubMedCrossRefGoogle Scholar
  32. 32.
    Hwang YC, Kaneko M, Bakr S et al (2004) Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J 18:1192–1199PubMedCrossRefGoogle Scholar
  33. 33.
    Ramasamy R, Trueblood N, Schaefer S (1998) Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol 275:H195–H203PubMedGoogle Scholar
  34. 34.
    Ramasamy R, Liu H, Oates PJ et al (1999) Attenuation of ischemia induced increases in sodium and calcium by the aldose reductase inhibitor zopolrestat. Cardiovasc Res 42:130–139PubMedCrossRefGoogle Scholar
  35. 35.
    Ananthakrishnan R, Kaneko M, Hwang YC et al (2009) Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 296:H333–H341PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaoka T, Nishimura C, Yamashita K et al (1995) Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. Diabetologia 38:255–261PubMedCrossRefGoogle Scholar
  37. 37.
    Tracey WR, Magee WP, Ellery CA et al (2000) Aldose reductase inhibition alone or combined with an adenosine A(3) agonist reduces ischemic myocardial injury. Am J Physiol Heart Circ Physiol 279:H1447–H1452PubMedGoogle Scholar
  38. 38.
    Kaiserova K, Tang XL, Srivastava S et al (2008) Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J Biol Chem 283:9101–9112PubMedCrossRefGoogle Scholar
  39. 39.
    Chen CH, Budas GR, Churchill EN et al (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:1493–1495PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Iwata K, Matsuno K, Nishinaka T et al (2006) Aldose reductase inhibitors improve myocardial reperfusion injury in mice by a dual mechanism. J Pharmacol Sci 102:37–46PubMedCrossRefGoogle Scholar
  41. 41.
    Lo AC, Cheung AK, Hung VK et al (2007) Deletion of aldose reductase leads to protection against cerebral ischemic injury. J Cereb Blood Flow Metab 27:1496–1509PubMedCrossRefGoogle Scholar
  42. 42.
    Tang WH, Wu S, Wong TM et al (2008) Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med 45:602–610PubMedCrossRefGoogle Scholar
  43. 43.
    Lee AY, Chung SS (1999) Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23–30PubMedGoogle Scholar
  44. 44.
    Chung SS, Ho EC, Lam KS et al (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:S233–S236PubMedCrossRefGoogle Scholar
  45. 45.
    Ho EC, Lam KS, Chen YS et al (2006) Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 55:1946–1953PubMedCrossRefGoogle Scholar
  46. 46.
    Obrosova IG, Minchenko AG, Vasupuram R et al (2003) Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52:864–871PubMedCrossRefGoogle Scholar
  47. 47.
    Changelian PS, Flanagan ME, Ball DJ et al (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–878PubMedCrossRefGoogle Scholar
  48. 48.
    Podewski EK, Hilfiker-Kleiner D, Hilfiker A et al (2003) Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation 107:798–802PubMedCrossRefGoogle Scholar
  49. 49.
    Hwang YC, Shaw S, Kaneko M et al (2005) Aldose reductase pathway mediates JAK-STAT signaling: a novel axis in myocardial ischemic injury. FASEB J 19:795–797PubMedGoogle Scholar
  50. 50.
    Shaw S, Wang X, Redd H et al (2003) High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J Biol Chem 278:30634–30641PubMedCrossRefGoogle Scholar
  51. 51.
    Abdillahi M, Ananthakrishnan R, Vedantham S et al (2012) Aldose reductase modulates cardiac glycogen synthase kinase-3beta phosphorylation during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 303:H297–H308PubMedCrossRefGoogle Scholar
  52. 52.
    Murphy E, Steenbergen C (2008) Does inhibition of glycogen synthase kinase protect in mice? Circ Res 103:226–228PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Li Q, Hwang YC, Ananthakrishnan R et al (2008) Polyol pathway and modulation of ischemia-reperfusion injury in type 2 diabetic BBZ rat hearts. Cardiovasc Diabetol 7:33PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Srivastava S, Chandrasekar B, Bhatnagar A et al (2002) Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase. Am J Physiol Heart Circ Physiol 283:H2612–H2619PubMedGoogle Scholar
  55. 55.
    Yang J, Moravec CS, Sussman MA et al (2000) Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102:3046–3052PubMedCrossRefGoogle Scholar
  56. 56.
    Vikramadithyan RK, Hu Y, Noh HL et al (2005) Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J Clin Invest 115:2434–2443PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Wu L, Vikramadithyan R, Yu S et al (2006) Addition of dietary fat to cholesterol in the diets of LDL receptor knockout mice: effects on plasma insulin, lipoproteins, and atherosclerosis. J Lipid Res 47:2215–2222PubMedCrossRefGoogle Scholar
  58. 58.
    Srivastava S, Vladykovskaya E, Barski OA et al (2009) Aldose reductase protects against early atherosclerotic lesion formation in apolipoprotein E-null mice. Circ Res 105:793–802PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Vedantham S, Noh H, Ananthakrishnan R et al (2011) Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E−/− mice. Arterioscler Thromb Vasc Biol 31:1805–1813PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gleissner CA, Sanders JM, Nadler J et al (2008) Upregulation of aldose reductase during foam cell formation as possible link among diabetes, hyperlipidemia, and atherosclerosis. Arterioscler Thromb Vasc Biol 28:1137–1143PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Harja E, Bu DX, Hudson BI et al (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118:183–194PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Dan Q, Wong R, Chung SK et al (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76:445–459PubMedCrossRefGoogle Scholar
  63. 63.
    Srivastava S, Ramana KV, Tammali R et al (2006) Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells. Diabetes 55:901–910PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Campbell M, Trimble ER (2005) Modification of PI3K- and MAPK-dependent chemotaxis in aortic vascular smooth muscle cells by protein kinase C-beta II. Circ Res 96:197–206PubMedCrossRefGoogle Scholar
  65. 65.
    Ramana KV, Friedrich B, Srivastava S et al (2004) Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 53:2910–2920PubMedCrossRefGoogle Scholar
  66. 66.
    Ramana KV, Chandra D, Srivastava S et al (2002) Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 277:32063–32070PubMedCrossRefGoogle Scholar
  67. 67.
    Ruef J, Liu SQ, Bode C et al (2000) Involvement of aldose reductase in vascular smooth muscle cell growth and lesion formation after arterial injury. Arterioscler Thromb Vasc Biol 20:1745–1752PubMedCrossRefGoogle Scholar
  68. 68.
    Ramana KV, Tammali R, Reddy AB et al (2007) Aldose reductase-regulated tumor necrosis factor-alpha production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology 148:4371–4384PubMedCrossRefGoogle Scholar
  69. 69.
    Oates PJ (2008) Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 9:14–36PubMedCrossRefGoogle Scholar
  70. 70.
    Watarai A, Nakashima E, Hamada Y et al (2006) Aldose reductase gene is associated with diabetic macroangiopathy in Japanese type 2 diabetic patients. Diabet Med 23:894–899PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    So WY, Wang Y, Ng MC et al (2008) Aldose reductase genotypes and cardiorenal complications: an 8-year prospective analysis of 1,074 type 2 diabetic patients. Diabetes Care 31:2148–2153PubMedCrossRefGoogle Scholar
  72. 72.
    Mylari BL, Beyer TA, Siegel TW (1991) A highly specific aldose reductase inhibitor, ethyl 1-benzyl-3-hydroxy-2(5H)-oxopyrrole-4-carboxylate, and its congeners. J Med Chem 34:1011–1018PubMedCrossRefGoogle Scholar
  73. 73.
    Sarges R, Oates PJ (1993) Aldose reductase inhibitors: recent developments. Prog Drug Res 40:99–161PubMedGoogle Scholar
  74. 74.
    Alexiou P, Pegklidou K, Chatzopoulou M et al (2009) Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 16:734–752PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson BF, Nesto RW, Pfeifer MA et al (2004) Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 27:448–454PubMedCrossRefGoogle Scholar
  76. 76.
    Didangelos TP, Athyros VG, Karamitsos DT et al (1998) Effect of aldose reductase inhibition on heart rate variability in patients with severe or moderate diabetic autonomic neuropathy. Clin Drug Investig 15:111–121PubMedCrossRefGoogle Scholar
  77. 77.
    Kessler L, Wiesel ML, Attali P et al (1998) Von Willebrand factor in diabetic angiopathy. Diabetes Metab 24:327–336PubMedGoogle Scholar
  78. 78.
    Boden G, Rao AK (2007) Effects of hyperglycemia and hyperinsulinemia on the tissue factor pathway of blood coagulation. Curr Diab Rep 7:223–227PubMedCrossRefGoogle Scholar
  79. 79.
    Jennings PE, Nightingale S, Le Guen C et al (1990) Prolonged aldose reductase inhibition in chronic peripheral diabetic neuropathy: effects on microangiopathy. Diabet Med 7:63–68PubMedCrossRefGoogle Scholar
  80. 80.
    Hara T, Nakamura J, Koh N et al (1995) An aldose reductase inhibitor, TAT, reduces ADP-induced platelet hyperaggregation in streptozotocin-induced diabetic rats with neuropathy. J Lab Clin Med 126:541–547PubMedGoogle Scholar
  81. 81.
    Tang WH, Stitham J, Gleim S et al (2011) Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J Clin Invest 121:4462–4476PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Schulz C, Leuschen NV, Frohlich T et al (2010) Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood 115:4102–4110PubMedCrossRefGoogle Scholar
  83. 83.
    Passariello N, Sepe J, Marrazzo G et al (1993) Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy. Diabetes Care 16:789–795PubMedCrossRefGoogle Scholar
  84. 84.
    Iso K, Tada H, Kuboki K et al (2001) Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in type 2 diabetic patients. J Diabetes Complications 15:241–244PubMedCrossRefGoogle Scholar
  85. 85.
    Oates J, Klioze S, Schwartz P et al (2008) Aldose reductase inhibitor zopolrestat reduces elevated urinary albumin excretion rate in T1DM subjects with incipient diabetic nephropathy. J Am Soc Nephrol 19:abst 642AGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Diabetes Research Program, Department of MedicineNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations