Skip to main content

Effects of Diabetes-Induced Hyperglycemia in the Heart: Biochemical and Structural Alterations

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Abstract

Hyperglycemia (HG) plays a major role in the development of diabetes mellitus (DM) and its complications. HG induces numerous maladaptations at the cellular level and moreover it is an independent risk factor to worsen cardiac performance and cell survival. The heart is a major target organ for damage with hyperglycemia. Alterations as a result of HG can lead to the development of a diabetic cardiomyopathy, resulting in changes to cardiac structure and function. Mechanisms damaging the heart are similar to those that damage the vasculature, but are more widespread in the myocardium. Four major pathways are implicated in HG-induced cardiac and vascular damage, including increases in advanced glycation end products (AGEs), enhanced hexosamine and polyol flux, and activation of classical isoforms of protein kinase C (PKC). These changes lead to abnormalities such as increased ventricular stiffness, cardiac fibrosis, derangement in cellular calcium ion homeostasis, and reduced myocyte contractility, resulting in heart failure (HF) over time. These pathways reflect upon a single HG-induced process of overproduction of superoxide by the mitochondrial electron-transport chain, which is responsible for the changes occurring in the heart. This chapter discusses the HG-induced pathways, focusing on their effects on the structure of the diabetic heart, as well as examining the downstream signaling whereby oxidative stress leads to myocardial fibrosis and impaired contractile function. In addition, this review highlights the role of endothelin-1 (ET-1) in endothelial dysfunction and the effects of humoral factors, angiotensin II and transforming growth factor-β, in evoking multiple signaling pathways in cardiac fibroblasts or fibrosis that leads to cardiac remodelling. How these signaling pathways mediated by HG contribute to the pathophysiological alterations in the heart is also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman S, Rahman T, Ismail AA-S, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9:767–780

    CAS  PubMed  Google Scholar 

  2. Jacobsen IB, Henriksen JE, Hother-Nielsen O et al (2009) Evidence-based insulin treatment in type 1 diabetes mellitus. Diabetes Res Clin Pract 86:1–10

    CAS  PubMed  Google Scholar 

  3. Fujisawa T, Ikegami H, Kawaguchi Y (2004) Common genetic basis between type 1 and type 2 diabetes mellitus indicated by interview-based assessment of family history. Diabetes Res Clin Pract 66:S91–S95

    CAS  PubMed  Google Scholar 

  4. Thorve VS, Kshirsagar AD, Vyawahare NS (2003) Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J Diabetes Complications 25:129–136

    Google Scholar 

  5. Kakleas K, Kandyla B, Karayianni C, Karavanaki K (2009) Psychosocial problems in adolescents with type 1 diabetes mellitus. Diabetes Metab 35:339–350

    CAS  PubMed  Google Scholar 

  6. Goldstein BJ (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 90:3–10

    Google Scholar 

  7. Hyer SL, Shehata HA (2005) Gestational diabetes mellitus. Curr Obstet Gynaecol 15: 368–374

    Google Scholar 

  8. Choi SW, Benzie IFF, Ma SW et al (2008) Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med 44:1217–1231

    CAS  PubMed  Google Scholar 

  9. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    PubMed  Google Scholar 

  10. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycaemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    CAS  PubMed  Google Scholar 

  11. Diabetes UK (2007) Diabetes heartache: the hard reality of cardiovascular care for people. Report can be accessed at http://www.diabetes.org.uk/Documents/News/Heartache_report07.pdf

  12. Tuttle KR (2005) Linking metabolism and immunology: diabetic nephropathy is an inflammatory disease. Am J Soc Nephrol 16:1537–1538

    Google Scholar 

  13. Schalkwijk CG, Stehouwer CDA (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143–159

    CAS  PubMed  Google Scholar 

  14. Winer N, Sowers JR (2004) Epidemiology of diabetes. J Clin Pharmacol 44:397–405

    PubMed  Google Scholar 

  15. Ceriello A, Testa R (2009) Antioxident and anti-inflammatory treatment in type 2 diabetes. Diabetes Care 32:S232–S236

    CAS  PubMed  Google Scholar 

  16. Rana JS, Nieuwdorp M, Jukema JW, Kastelein JJP (2007) Cardiovascular metabolic syndrome—an interplay of obesity, inflammation, diabetes and coronary heart disease. Diabetes Obes Metab 9:218–232

    CAS  PubMed  Google Scholar 

  17. Pires IF, Moreira LAF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    Google Scholar 

  18. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    CAS  PubMed  Google Scholar 

  19. Rubler S, Dlugash J, Yuceoglu YZ (1972) New type of cardiomyopathy associated with glomerulosclerosis. Am J Cardiol 30:595–602

    CAS  PubMed  Google Scholar 

  20. Somaratne JB, Whalley GA, Poppe KK et al (2011) Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc Diabetol 10:29

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Shizukuda Y, Reyland ME, Buttrick PM (2002) Protein kinase C-modulates apoptosis induced by hyperglycemia in adult ventricular myocytes. Am J Physiol Heart Circ Physiol 282:H1625–H1634

    CAS  PubMed  Google Scholar 

  22. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    PubMed  Google Scholar 

  23. Bertoni AG, Tsai A, Kasper EK, Francati F (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case–control study. Diabetes Care 26:2791–2795

    PubMed  Google Scholar 

  24. Ghosh AK, Bradham WS et al (2010) Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-β signaling and endothelial-to-mesenchymal transition. Am J Physiol Heart Circ Physiol 122:1200–1209

    CAS  Google Scholar 

  25. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    PubMed Central  PubMed  Google Scholar 

  26. Dobrin JS, Lebeche D (2010) Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 8:373–391

    CAS  PubMed  Google Scholar 

  27. Johansen JS, Harris K, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:1–11

    Google Scholar 

  28. D’Souza A, Howarth FC, Yanni J et al (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96:875–888

    PubMed  Google Scholar 

  29. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Exp Ther 120:1–34

    CAS  Google Scholar 

  30. Filippo CD, Marfella R, Cuzzocrea S et al (2006) Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes 54:808–810

    Google Scholar 

  31. Chen S, Evans T, Mukherjee K et al (2000) Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J Mol Cell Cardiol 32:1621–1629

    CAS  PubMed  Google Scholar 

  32. Ceriello A (2008) Cardiovascular effects of acute hyperglycaemia: pathophysiological underpinnings. Diab Vasc Dis Res 5:260–268

    PubMed  Google Scholar 

  33. Doron A (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of ageing and diabetes. J Hypertens 21:3–12

    Google Scholar 

  34. Asbun J, Villareal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    CAS  PubMed  Google Scholar 

  35. Masoudi FA, Inzucchi SE (2007) Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol 99:113–132

    Google Scholar 

  36. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  37. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Nature 54:1615–1625

    CAS  Google Scholar 

  38. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  40. Nishikawa T, Edelstein D, Du XL et al (2002) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Google Scholar 

  41. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    CAS  PubMed  Google Scholar 

  42. Yasuda H, Terada M, Maeda K et al (2003) Diabetic neuropathy and nerve regeneration. Prog Neurobiol 69:229–285

    CAS  PubMed  Google Scholar 

  43. Brownlee M (2006) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Google Scholar 

  44. Wold LE, Ceylan AF, Ren J (2005) Oxidative stress and stress signalling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin 26:908–917

    CAS  PubMed  Google Scholar 

  45. Aronson D, Rayfield EJ (2002) How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 1:1–10

    PubMed Central  PubMed  Google Scholar 

  46. Farhangkhoee H, Khan ZA, Kaur H et al (2006) Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Exp Ther 111:384–399

    CAS  Google Scholar 

  47. Bidasee KR, Nallani K, Yu Y et al (2006) Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes 52:1825–1836

    Google Scholar 

  48. Deivedi J, Sarkar D (2010) Oxidative stress with homocysteine, lipoprotein (a) and lipid profile in diabetic nephropathy. Int J ABPT 1:840–846

    Google Scholar 

  49. Mohora M, Greabu M, Muscurel C et al (2007) The sources and the targets of oxidative stress in the aetiology of diabetic complications. Rom J Biophys 17:63–84

    CAS  Google Scholar 

  50. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Twigg SM, Chen MM, Joly AH et al (2001) Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 142:1760–1769

    CAS  PubMed  Google Scholar 

  52. Pugliese G, Pricci F, Leto G et al (2002) The diabetic milieu modulates the advanced glycation end product—receptor complex in the mesangium by inducing or up-regulating galectin-3 expression. Diabetes 49:1249–1257

    Google Scholar 

  53. Candido R, Forbes JM, Thomas MC et al (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    CAS  PubMed  Google Scholar 

  54. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of ageing in diabetes. J Hypertens 21:3–12

    CAS  PubMed  Google Scholar 

  55. Soulis-Liparota T, Cooper ME, Dunlop M, Jerums J (1995) The relative roles of advanced glycation, oxidation and aldose reductase inhibition in the development of experimental diabetic nephropathy in the Sprague–Dawley rat. Diabetologia 38:387–394

    CAS  PubMed  Google Scholar 

  56. Forbes JM, Cooper ME, Oldfield MD, Thomas ME (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14:S254–S258

    CAS  PubMed  Google Scholar 

  57. Idris I, Gray S, Donnelly R (2001) Protein kinase C activation: isozyme specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 44:659–673

    CAS  PubMed  Google Scholar 

  58. Idris I, Gray S, Donnelly R (2004) Protein kinase C-beta inhibition and diabetic micro-angiopathy: effects on endothelial permeability responses in vitro. Eur J Pharmacol 485:141–144

    CAS  PubMed  Google Scholar 

  59. Park JYP, Ha SU, King GL (1999) The role of protein kinase C activation in the pathogenesis of diabetic vascular complications. Peri Dial Int 19(2):S222–S227

    Google Scholar 

  60. Ways DK, Sheetz MJ (2002) The role of protein kinase C in the development of the complications of diabetes. Vitam Horm 60:149–193

    Google Scholar 

  61. Eichberg J (2002) Protein kinase C changes in diabetes: Is the concept relevant to neuropathy? Neurobiol Diabet Neuropathy 50:61–82

    CAS  Google Scholar 

  62. Evcimen ND, King GL (2007) The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 55:498–510

    PubMed  Google Scholar 

  63. Scott JA, King GL (2004) Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci 1031:204–213

    CAS  PubMed  Google Scholar 

  64. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866

    CAS  PubMed  Google Scholar 

  65. Zhu Q, Xu X, Xia X, Qing G (2005) Role of protein kinase C on the alteration of retinal endothelin-1 in streptozotocin-induced diabetic rats. Exp Eye Res 81:200–206

    CAS  PubMed  Google Scholar 

  66. Sayeski PP, Craven PA, Derubertis FR (1993) Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes 42:118–126

    Google Scholar 

  67. Sayeski PP, Wang D, Su K, Han IO et al (1997) Cloning and partial characterization of the mouse glutamine: fructose-6-phosphate amidotransferase (GFAT) gene promoter. Nucleic Acids Res 25:1458–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Schleicher ED, Weigert C (2000) Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int 58:S-13–S-18

    Google Scholar 

  69. Evans T, Deng DX, Chen S, Chakrabarti S (2000) Endothelin receptor blockade prevents augmented extracellular matrix component mRNA expression and capillary basement membrane thickening in the retina of diabetic and galactose-fed rats. Diabetes 49:662–666

    CAS  PubMed  Google Scholar 

  70. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    CAS  PubMed  Google Scholar 

  71. Rosen P, Nawroth PP, King G et al (2001) The role of oxidative stress in the onset and progression of diabetes and its complications. Diabetes/Metab Res Rev 17:189–212

    CAS  Google Scholar 

  72. Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192

    CAS  PubMed  Google Scholar 

  73. Du X, Edelstein D, Obici S et al (2006) Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116:1071–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    CAS  PubMed  Google Scholar 

  75. Nascimento NR, Lessa LM, Kerntopf MR et al (2006) Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc Natl Acad Sci USA 103:218–223

    CAS  PubMed  Google Scholar 

  76. Stitt AW, Li YM, Gardiner TA, Bucala R (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531

    CAS  PubMed  Google Scholar 

  77. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    CAS  PubMed  Google Scholar 

  78. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodelling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodelling. J Am Coll Cardiol 35:569–582

    CAS  PubMed  Google Scholar 

  79. Pichler M, Rainer PP, Schauer S, Hoefler G (2012) Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin. J Am Coll Cardiol 59:1008–1016

    PubMed  Google Scholar 

  80. Li B, Zheng Z, Wei Y et al (2011) Therapeutic effects of neuregulin-1 in diabetic cardiomyopathy rats. Cardiovasc Diabetol 10:69–77

    PubMed Central  PubMed  Google Scholar 

  81. Ahmed SH, Clark LL, Pennington WR et al (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089–2096

    CAS  PubMed  Google Scholar 

  82. Cai L, Wang Y, Zhou G et al (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697

    CAS  PubMed  Google Scholar 

  83. Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges and therapeutic options. Am J Med 121:748–757

    PubMed  Google Scholar 

  84. Sabbah HN, Sharov VG, Lesch M, Goldstein S (1995) Progression of heart failure: a role for interstitial fibrosis. Mol Cell Biochem 147:29–34

    CAS  PubMed  Google Scholar 

  85. Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27:92–98

    PubMed  Google Scholar 

  86. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200:423–428

    CAS  PubMed  Google Scholar 

  87. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    CAS  PubMed  Google Scholar 

  88. De Leeuw N, Ruiter DJ, Balk AH et al (2001) Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14:299–306

    PubMed  Google Scholar 

  89. Weber KT (2004) Fibrosis in hypertensive heart disease: focus on cardiac fibroblasts. J Hypertens 22:47–50

    CAS  PubMed  Google Scholar 

  90. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    CAS  PubMed  Google Scholar 

  91. Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687

    CAS  PubMed  Google Scholar 

  92. Pauschinger M, Knopf D, Petschauer S et al (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    CAS  PubMed  Google Scholar 

  93. Bouzegrhane F, Thibault G (2002) Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 53:304–312

    CAS  PubMed  Google Scholar 

  94. Cuspidi C, Ciulla M, Zanchetti A (2006) Hypertensive myocardial fibrosis. Nephrol Dial Transplant 21:20–23

    PubMed  Google Scholar 

  95. Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256

    CAS  PubMed  Google Scholar 

  96. Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond) 100:481–492

    CAS  Google Scholar 

  97. Lijnen PJ, Petrov VV, Fagard RH (2001) Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J Renin Angiot Aldost Syst 2:117–122

    CAS  Google Scholar 

  98. Staufenberger S, Jacobs M, Brandstatter K et al (2001) Angiotensin II type 1 receptor regulation and differential trophic effects on rat cardiac myofibroblasts after acute myocardial infarction. J Cell Physiol 187:326–335

    CAS  PubMed  Google Scholar 

  99. Rosenkranz S (2004) TGF-β1 and angiotensin networking in cardiac remodelling. Cardiovasc Res 63:423–432

    CAS  PubMed  Google Scholar 

  100. Jiang XY, Gao GD, Du XJ et al (2007) The signalling of AT2 and the influence on the collagen metabolism of AT2 receptor in adult rat cardiac fibroblasts. Acta Cardiol 62:429–438

    PubMed  Google Scholar 

  101. Pan CH, Wen CH, Lin CS (2008) Interplay of angiotensin II and angiotensin (1–7) in the regulation of matrix metalloproteinases of human cardiocytes. Exp Physiol 93:599–612

    CAS  PubMed  Google Scholar 

  102. Sato H, Watanabe A, Tanaka T et al (2003) Regulation of the human tumour necrosis factor- α promoter by angiotensin II and lipopolysaccharide in cardiac fibroblasts: different cis-acting promoter sequences and transcriptional factors. J Mol Cell Cardiol 35:1197–1205

    CAS  PubMed  Google Scholar 

  103. Chao HH, Chen JJ, Chen CH et al (2005) Inhibition of angiotensin II induced endothelin-1 gene expression by 17-β-oestradiol in rat cardiac fibroblasts. Heart 91:664–669

    CAS  PubMed  Google Scholar 

  104. Wang S, Wang X, Yan J et al (2007) Resveratrol inhibits proliferation of cultured rat cardiac fibroblasts: correlated with NO-cGMP signaling pathway. Eur J Pharmacol 567:26–35

    CAS  PubMed  Google Scholar 

  105. Chintalgattu V, Nair DM, Katwa LC (2003) Cardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol 35:277–286

    CAS  PubMed  Google Scholar 

  106. Border WA, Ruoslahtit E (1999) Transforming growth factor-β in disease: the dark side of tissue repair. J Clin Invest 90:1–7

    Google Scholar 

  107. Border WA, Noble NA (1994) Transforming growth factor β in tissue fibrosis. N Engl J Med 331:1286–1292

    CAS  PubMed  Google Scholar 

  108. Wu L, Derynck R (2009) Essential role of TGF-β1 signalling in glucose-induced cell hypertrophy. Dev Cell 17:35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Liang H, Zhang C, Ban T (2012) A novel reciprocal loop between microRNA-21 and TGF-RIII is involved in cardiac fibrosis. Int J Biochem Cell Biol 44:2152–2160

    CAS  PubMed  Google Scholar 

  110. Chu W, Li X, Li C et al (2011) TGFBR3, a potential negative regulator of TGF-beta signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J Cell Physiol 226:2586–2594

    CAS  PubMed  Google Scholar 

  111. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF beta family signalling. Nature 425:577–584

    CAS  PubMed  Google Scholar 

  112. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodelling. Pharmacol Exp Ther 123:255–278

    CAS  Google Scholar 

  113. Eickelberg O, Centrella M, Reiss M et al (2002) Betaglycan inhibits TGF-beta signalling by preventing type I-type II receptor complex formation. Glycosaminoglycan modifications alter beta-glycan function. J Biol Chem 277:823–829

    CAS  PubMed  Google Scholar 

  114. Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  115. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

    CAS  PubMed  Google Scholar 

  116. Tanaka T, Hasegawa K, Fujita M et al (1998) Marked elevation of brain natriuretic peptide levels in pericardial fluid is closely associated with left ventricular dysfunction. J Am Coll Cardiol 31:399–403

    CAS  PubMed  Google Scholar 

  117. Burnett JC, Kao PC, Hu DC et al (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231:1145–1147

    PubMed  Google Scholar 

  118. Tsuruda T, Boerrigter G, Huntley BK et al (2002) Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91:1127–1134

    CAS  PubMed  Google Scholar 

  119. Garbers DL, Chrisman TD, Wiegn P et al (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ergul A (2011) Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacol Res 63:477–482

    CAS  PubMed  Google Scholar 

  121. Schleicher ED, Nerlich A (1996) The role of hyperglycemia in the development of diabetic complications. Horm Metab Res 28:367–373

    CAS  PubMed  Google Scholar 

  122. Esper RJ, Vilarino JO, Machado RA, Parango A (2008) Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol 45:17–43

    CAS  PubMed  Google Scholar 

  123. Guo Z, Xia Z, Jiang J, McNeil JH (2007) Down-regulation of NADPH oxidase, antioxidant enzymes and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N enzymes. Am J Physiol Heart Circ Physiol 292:H1728–H1736

    CAS  PubMed  Google Scholar 

  124. Tan KC, Chow WS, Ai VH et al (2002) Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab Res Rev 18:71–76

    CAS  PubMed  Google Scholar 

  125. Creager MA, Luscher TF (2003) Diabetes and vascular disease pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108:1527–1532

    PubMed  Google Scholar 

  126. Kawashima S (2004) The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium 11:99–107

    CAS  PubMed  Google Scholar 

  127. Nomura S, Shouzu A, Omoto S et al (2000) Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol 121:437–443

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Williams SB, Goldfine AB, Timimi FK et al (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

  129. Beckman JA, Goldfine AB, Gordon MB et al (2001) Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 103:1618–1623

    CAS  PubMed  Google Scholar 

  130. Hink U, Li H, Mollnau H et al (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22

    CAS  PubMed  Google Scholar 

  131. Kinlay S, Libby P, Ganz P (2001) Endothelial function and coronary artery disease. Curr Opin Lipidol 12:383–389

    CAS  PubMed  Google Scholar 

  132. Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803

    CAS  PubMed  Google Scholar 

  133. Laursen JB, Somers M, Kurz S et al (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103:1282–1288

    CAS  PubMed  Google Scholar 

  134. Feng Z, Hu W, Tang MS (2004) Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc Natl Acad Sci USA 101:8598–8602

    CAS  PubMed  Google Scholar 

  135. Seager MJ, Singal PK, Orchard R, Pierce GN, Dhalla NS (1984) Cardiac cell damage: a primary myocardial disease in streptozotocin-induced chronic diabetes. Br J Exp Pathol 65:613–623

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Hsiao YC, Suzuki K, Abe H, Toyota T (1987) Ultrastructural alterations in cardiac muscle of diabetic BB Wistar rats. Virchows Arch A Pathol Anat Histopathol 411:45–51

    CAS  PubMed  Google Scholar 

  137. Valensi PE, Johnson NB, Maison-Blanche P, Extramania F, Motte G, Coumel P (2002) Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care 25:918–923

    PubMed  Google Scholar 

  138. Pfister R, Cairns R, Erdmann E, Schneider CA (2011) PROactive investigators: prognostic impact of electrocardiographic signs in patients with type 2 diabetes and cardiovascular disease: results from the PROactive study. Diabet Med 28:1206–1212

    CAS  PubMed  Google Scholar 

  139. Adeghate E (2004) Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261:187–191

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaipaul Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iqbal, T., Welsby, P.J., Howarth, F.C., Bidasee, K., Adeghate, E., Singh, J. (2014). Effects of Diabetes-Induced Hyperglycemia in the Heart: Biochemical and Structural Alterations. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_5

Download citation

Publish with us

Policies and ethics