Skip to main content

Cardiovascular Autonomic Neuropathy in Diabetes

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

  • 7279 Accesses

Abstract

The heart is extensively innervated, and its electrical and mechanical performance is controlled by the autonomic nervous system. The cardiac nervous system comprises the sympathetic, parasympathetic, and sensory nervous systems that together regulate heart function on demand. The density of cardiac innervation varies in diseased hearts, leading to unbalanced neural activation and lethal arrhythmia. Diabetic sensory neuropathy causes silent myocardial ischemia, which is characterized by loss of pain perception during myocardial ischemia and is a major cause of sudden cardiac death in diabetes mellitus (DM). Despite its clinical importance, the mechanisms underlying the control and regulation of cardiac innervation remain poorly understood. Nerve growth factor (NGF), a potent chemoattractant, is highly expressed in cardiomyocytes during development. In contrast, Sema3a, a neural chemorepellent, is highly expressed in the subendocardium of early-stage embryos, but is suppressed during development. The balance between NGF and Sema3a expression leads to epicardial to endocardial transmural sympathetic innervation patterning. Downregulation of NGF leads to diabetic neuropathy, whereas NGF supplementation rescues silent myocardial ischemia in DM. In this review, we summarize the molecular mechanisms underlying cardiac autonomic innervation, with a particular focus on DM and the clinical implications of cardiac autonomic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito M, Zipes DP (1994) Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation 90:1459–1468

    Article  CAS  PubMed  Google Scholar 

  2. Crick SJ, Sheppard MN, Ho SY et al (1999) Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat 195:341–357

    Article  CAS  PubMed  Google Scholar 

  3. Chow LT, Chow SS, Anderson RH et al (1993) Innervation of the human cardiac conduction system at birth. Br Heart J 69:430–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hansson M, Kjorell U, Forsgren S (1998) Increased immunoexpression of atrial natriuretic peptide in the heart conduction system of the rat after cardiac sympathectomy. J Mol Cell Cardiol 30:2047–2057

    Article  CAS  PubMed  Google Scholar 

  5. Randall WC, Szentivanyi M, Pace JB et al (1968) Patterns of sympathetic nerve projections onto the canine heart. Circ Res 22:315–323

    Article  CAS  PubMed  Google Scholar 

  6. Crick SJ, Wharton J, Sheppard MN et al (1994) Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 89:1697–1708

    Article  CAS  PubMed  Google Scholar 

  7. Kanazawa H, Ieda M, Kimura K et al (2010) Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest 120:408–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kimura K, Ieda M, Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110:325–336

    Article  CAS  PubMed  Google Scholar 

  9. Ulphani JS, Cain JH, Inderyas F et al (2010) Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm 7:1113–1119

    Article  PubMed  Google Scholar 

  10. Ieda M, Kanazawa H, Ieda Y et al (2006) Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation 114:2351–2363

    Article  CAS  PubMed  Google Scholar 

  11. Ieda M, Fukuda K (2009) Cardiac innervation and sudden cardiac death. Curr Cardiol Rev 5:289–295

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hua F, Harrison T, Qin C et al (2004) c-Fos expression in rat brain stem and spinal cord in response to activation of cardiac ischemia-sensitive afferent neurons and electrostimulatory modulation. Am J Physiol Heart Circ Physiol 287:H2728–H2738

    Article  CAS  PubMed  Google Scholar 

  13. Schultz HD, Ustinova EE (1998) Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc Res 38:348–355

    Article  CAS  PubMed  Google Scholar 

  14. Maser RE, Mitchell BD, Vinik AI et al (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901

    Article  PubMed  Google Scholar 

  15. Ieda M, Fukuda K (2009) New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: the regulatory mechanisms of cardiac innervation and their critical roles in cardiac performance. J Pharmacol Sci 109:348–353

    Article  CAS  PubMed  Google Scholar 

  16. Pop-Busui R, Evans GW, Gerstein HC et al (2010) Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 33:1578–1584

    Article  CAS  PubMed  Google Scholar 

  17. Pop-Busui R (2012) What do we know and we do not know about cardiovascular autonomic neuropathy in diabetes. J Cardiovasc Transl Res 5:463–578

    Article  PubMed Central  PubMed  Google Scholar 

  18. Landstedt-Hallin L, Englund A, Adamson U et al (1999) Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. J Intern Med 24:299–307

    Article  Google Scholar 

  19. Robinson RT, Harris ND, Ireland RH et al (2004) Changes in cardiac repolarization during clinical episodes of nocturnal hypoglycaemia in adults with Type 1 diabetes. Diabetologia 47:312–315

    Article  CAS  PubMed  Google Scholar 

  20. Nordin C (2010) The case for hypoglycaemia as a proarrhythmic event: basic and clinical evidence. Diabetologia 53:1552–15561

    Article  CAS  PubMed  Google Scholar 

  21. Watkins PJ, Mackay JD (1980) Cardiac denervation in diabetic neuropathy. Ann Intern Med 92:304–307

    Article  CAS  PubMed  Google Scholar 

  22. Ewing DJ, Campbell IW, Clarke BF (1980) The natural history of diabetic autonomic neuropathy. Q J Med 49:95–108

    CAS  PubMed  Google Scholar 

  23. Ewing DJ, Campbell IW, Clarke BF (1981) Heart rate changes in diabetes mellitus. Lancet 317:183–186

    Article  Google Scholar 

  24. Schonauer M, Thomas A, Morbach S et al (2008) Cardiac autonomic diabetic neuropathy. Diab Vasc Dis Res 5:336–344

    Article  PubMed  Google Scholar 

  25. Brennan C, Rivas-Plata K, Landis SC (1999) The p75 neurotrophin receptor influences NT-3 responsiveness of sympathetic neurons in vivo. Nat Neurosci 2:699–705

    Article  CAS  PubMed  Google Scholar 

  26. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  27. Lockhart ST, Turrigiano GG, Birren SJ (1997) Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci 17:9573–9582

    CAS  PubMed  Google Scholar 

  28. Heumann R, Korsching S, Scott J et al (1984) Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 3:3183–3189

    CAS  PubMed  Google Scholar 

  29. Kanki H, Fukuda K, Okushi K et al (1999) Comparison of nerve growth factor mRNA expression in cardiac and skeletal muscle in streptozotocin-induced diabetic mice. Life Sci 65:2305–2313

    Article  CAS  PubMed  Google Scholar 

  30. Kimura K, Kanazawa H, Ieda M et al (2010) Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci 156:27–35

    Article  CAS  PubMed  Google Scholar 

  31. Zhou S, Chen LS, Miyauchi Y et al (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    Article  CAS  PubMed  Google Scholar 

  32. Cao JM, Chen LS, KenKnight BH et al (2000) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  CAS  PubMed  Google Scholar 

  33. Kimura K, Ieda M, Kanazawa H et al (2007) Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy. Circ Res 100:1755–1764

    Article  CAS  PubMed  Google Scholar 

  34. Zahner MR, Li DP, Chen SR et al (2003) Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J Physiol 551:515–523

    Article  CAS  PubMed  Google Scholar 

  35. Trupp M, Ryden M, Jornvall H et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148

    Article  CAS  PubMed  Google Scholar 

  36. Pan HL, Chen SR (2004) Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 110:1826–1831

    Article  PubMed  Google Scholar 

  37. Wang L, Wang DH (2005) TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112:3617–3623

    Article  CAS  PubMed  Google Scholar 

  38. Faerman I, Faccio E, Milei J et al (1977) Autonomic neuropathy and painless myocardial infarction in diabetic patients. Histologic evidence of their relationship. Diabetes 26:1147–1158

    Article  CAS  PubMed  Google Scholar 

  39. Vinik AI, Maser RE, Mitchell BD et al (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  40. Young LH, Wackers FJ, Chyun DA et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301:1547–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hage FG, Iskandrian AE (2011) Cardiovascular imaging in diabetes mellitus. J Nucl Cardiol 18:959–965

    Article  PubMed  Google Scholar 

  42. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397

    Article  PubMed  Google Scholar 

  43. Puschel AW, Adams RH, Betz H (1995) Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14:941–948

    Article  CAS  PubMed  Google Scholar 

  44. Tanelian DL, Barry MA, Johnston SA et al (1997) Semaphorin III can repulse and inhibit adult sensory afferents in vivo. Nat Med 3:1398–1401

    Article  CAS  PubMed  Google Scholar 

  45. Ieda M, Kanazawa H, Kimura K et al (2007) Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13:604–612

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arai, T., Ieda, M., Fukuda, K. (2014). Cardiovascular Autonomic Neuropathy in Diabetes. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_14

Download citation

Publish with us

Policies and ethics