Skip to main content

Role of PPAR-δ in Diabetic Cardiomyopathy

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

  • 7271 Accesses

Abstract

Although diabetics are at increased risk of structural heart disease from vascular complications, the concept of diabetic cardiomyopathy suggests a direct cellular insult to the myocardium. Several investigations, mainly echocardiographic population-based studies, documented a uniform association between diabetic cardiomyopathy and the presence of cardiac hypertrophy and myocardial stiffness. In the following review, we attempt to provide a comprehensive insight to discuss the possible underlying mechanisms, especially the role of PPARs in diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  CAS  PubMed  Google Scholar 

  2. Adeghate E, Schattner P, Dunn E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci 1084:1–29

    Article  PubMed  Google Scholar 

  3. National Cholesterol Education Program (NCEP), Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  4. Plutzky J (2003) Peroxisome proliferator-activated receptors as therapeutic targets in inflammation. J Am Coll Cardiol 42:1764–1766

    Article  PubMed  Google Scholar 

  5. Haffner SM, Lehto S, Rönnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  CAS  PubMed  Google Scholar 

  6. Anonymous (1990) Diabetes mellitus: a major risk factor for cardiovascular disease. A joint editorial statement by the American Diabetes Association; The National Heart, Lung, and Blood Institute; The Juvenile Diabetes Foundation International; The National Institute of Diabetes and Digestive and Kidney Diseases; and The American Heart Association. Circulation 100:1132–1133

    Google Scholar 

  7. Rubler S, Dlugash J, Yuceoglu YZ et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  8. Movahed MR, Hashemzadeh M, Jamal MM (2005) Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol 105:315–318

    Article  PubMed  Google Scholar 

  9. Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    Article  PubMed  Google Scholar 

  10. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    Article  CAS  PubMed  Google Scholar 

  11. Tarquini R, Lazzeri C, Pala L et al (2011) The diabetic cardiomyopathy. Acta Diabetol 48:173–181

    Article  PubMed  Google Scholar 

  12. Syrovy I, Hodny Z (1992) Nonenzymatic glycosylation of myosin: effects of diabetes and ageing. Gen Physiol Biophys 11:301–307

    CAS  PubMed  Google Scholar 

  13. Van Heerebeek L, Hamdani N, Handoko ML (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–45

    Article  PubMed  Google Scholar 

  14. Zabalgoitia M, Ismaeil MF, Anderson L et al (2001) Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 87:320–323

    Article  CAS  PubMed  Google Scholar 

  15. Boyer JK, Thanigaraj S, Schechtman KB et al (2004) Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 93:870–875

    Article  PubMed  Google Scholar 

  16. Chatham JC, Seymour AM (2002) Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res 55:104–112

    Article  CAS  PubMed  Google Scholar 

  17. Huisamen B, van Zyl M, Keyser A et al (2001) The effects of insulin and beta-adrenergic stimulation on glucose transport, glut 4 and PKB activation in the myocardium of lean and obese noninsulin dependent diabetes mellitus rats. Mol Cell Biochem 223:15–25

    Article  CAS  PubMed  Google Scholar 

  18. Bell DSH (2003) Diabetic cardiomyopathy. Diabetes Care 26:2949–2951

    Article  PubMed  Google Scholar 

  19. Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16:971–979

    Article  PubMed  Google Scholar 

  20. Cai L, Wang Y, Zhou G et al (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697

    Article  CAS  PubMed  Google Scholar 

  21. Liang Q, Carlson EC, Donthi RV et al (2002) Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51:174–181

    Article  CAS  PubMed  Google Scholar 

  22. Matsushima S, Kinugawa S, Ide T et al (2006) Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Physiol Heart Circ Physiol 291:2237–2245

    Article  Google Scholar 

  23. Shen X, Zheng S, Metreveli NS et al (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    Article  CAS  PubMed  Google Scholar 

  24. Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    Article  CAS  PubMed  Google Scholar 

  26. Susic D, Varagic J, Ahn J et al (2004) Collagen cross-link breakers: a beginning of a new era in the treatment of cardiovascular changes associated with aging, diabetes, and hypertension. Curr Drug Targets Cardiovasc Haematol Disord 4:97–101

    Article  CAS  PubMed  Google Scholar 

  27. Corman B, Duriez M, Poitevin P et al (1998) Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci U S A 95:1301–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:1489–1506

    Article  Google Scholar 

  29. Herrero P, Peterson LR, McGill JB et al (2006) Increased myocardial fatty acid metabolism in patients with Type 1 diabetes mellitus. J Am Coll Cardiol 47:598–604

    Article  CAS  PubMed  Google Scholar 

  30. Eckel J, Reinauer H (1990) Insulin action on glucose transport in isolated cardiac myocytes: signalling pathways and diabetes-induced alterations. Biochem Soc Trans 18:1125–1127

    CAS  PubMed  Google Scholar 

  31. Liedtke AJ, DeMaison L, Eggleston AM et al (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542

    Article  CAS  PubMed  Google Scholar 

  32. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: part II. Potential mechanisms. Circulation 109:121–130

    Google Scholar 

  33. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  CAS  PubMed  Google Scholar 

  34. Escher P, Braissant O, Basu-Modak S et al (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Beauchamp MC, Renier G (2002) Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 165:101–110

    Article  CAS  PubMed  Google Scholar 

  36. Youssef J, Badr M (2004) Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol 3:156–166

    Article  Google Scholar 

  37. Duval C, Fruchart JC, Staels B (2004) PPAR alpha, fibrates, lipid metabolism and inflammation. Arch Mal Coeur Vaiss 97:665–672

    CAS  PubMed  Google Scholar 

  38. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    Article  CAS  PubMed  Google Scholar 

  39. Tengholm A, Meyer T (2002) A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr Biol 12:1871–1876

    Article  CAS  PubMed  Google Scholar 

  40. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPAR-alpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPAR beta/delta and PPAR alpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Law RE, Goetze S, Xi XP et al (2000) Expression and function of PPAR-γ in rat and human vascular smooth muscle cells. Circulation 101:1311–1318

    Article  CAS  PubMed  Google Scholar 

  43. Finck BN, Kelly DP (2002) Peroxisome proliferator-activated receptor alpha (PPAR-alpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol 34:1249–1257

    Article  PubMed  Google Scholar 

  44. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  45. Olefsky JM, Saltiel AR (2000) PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab 11:362–368

    Article  CAS  PubMed  Google Scholar 

  46. Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661–1669

    Article  CAS  PubMed  Google Scholar 

  47. Gupta S, Purcell NH, Lin A et al (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 159:1019–1028

    Article  CAS  PubMed  Google Scholar 

  48. Purcell NH, Tang G, Yu C et al (2001) Activation of NF-kappaB is required for hypertrophic growth in primary rat neonatal ventricular myocytes. Proc Natl Acad Sci U S A 98:6668–6673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Takemoto Y, Yoshiyama M, Takeuchi K et al (1999) Increased JNK, AP-1 and NF-kappaB DNA binding activities in isoproterenol-induced cardiac remodeling. J Mol Cell Cardiol 31:2017–2030

    Article  CAS  PubMed  Google Scholar 

  50. Muller DN, Mervaala EM, Dechend R et al (2000) Angiotensin II (AT1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol 157:111–122

    Article  CAS  PubMed  Google Scholar 

  51. Muller DN, Dechend R, Mervaala EM et al (2000) NF-kappa B inhibition ameliorates angiotensin-II induced inflammatory damage in rats. Hypertension 35:193–201

    Article  CAS  PubMed  Google Scholar 

  52. Bishop-Bailey D (2000) Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol 129:823–824

    Article  CAS  PubMed  Google Scholar 

  53. Asakawa M, Takano H, Nagai T et al (2002) PPAR-gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 105:1240–1246

    Article  CAS  PubMed  Google Scholar 

  54. Yamamoto K, Okhi R, Lee RT et al (2001) PPAR gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104:1670–1675

    Article  CAS  PubMed  Google Scholar 

  55. Balfour JA, Plosker GL (1999) Rosiglitazone. Drugs 57:921–930

    Article  CAS  PubMed  Google Scholar 

  56. Kliewer SA, Forman BM, Blumberg B et al (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 91:7355–7359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    Article  CAS  PubMed  Google Scholar 

  58. Planavila A, Rodríguez-Calvo R, Jové M (2005) Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 65:832–841

    Article  CAS  PubMed  Google Scholar 

  59. Blaschke F, Takata Y, Caglayan E et al (2006) Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol 26:28–40

    Article  CAS  PubMed  Google Scholar 

  60. Muscat GE, Dressel U (2005) Cardiovascular disease and PPAR delta: targeting the risk factors. Curr Opin Invest Drugs 6:887–894

    CAS  Google Scholar 

  61. Cheng L, Ding G, Qin Q et al (2004) Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286

    Article  CAS  PubMed  Google Scholar 

  62. Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  CAS  PubMed  Google Scholar 

  63. Pesant M, Sueur S, Dutartre P et al (2006) Peroxisome proliferator-activated receptor delta (PPAR delta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res 69:440–449

    Article  CAS  PubMed  Google Scholar 

  64. Barish GD, Narkar VA, Evans RM (2006) PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Yu BC, Chang CK, Ou HY et al (2008) Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 80:78–87

    Article  CAS  PubMed  Google Scholar 

  66. Planavila A, Laguna JC, Vazquez-Carrera M (2005) Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem 280:17464–17471

    Article  CAS  PubMed  Google Scholar 

  67. Feingold K, Kim MS, Shigenaga J et al (2004) Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab 286:201–207

    Article  Google Scholar 

  68. Finck BN, Kelly DP (2007) Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115:2540–2548

    Article  PubMed  Google Scholar 

  69. Rimbaud S, Garnier A, Ventura-Clapier R (2009) Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep 61:131–138

    CAS  PubMed  Google Scholar 

  70. Fein FS, Kornstein LB, Strobeck JE et al (1980) Altered myocardial mechanics in diabetic rats. Circ Res 47:922–933

    Article  CAS  PubMed  Google Scholar 

  71. Fein FS, Strobeck JE, Malhotra A et al (1981) Reversibility of diabetic cardiomyopathy with insulin in rats. Circ Res 49:1251–1261

    Article  CAS  PubMed  Google Scholar 

  72. Chen ZC, Yu BC, Chen LJ et al (2011) Characterization of the mechanisms of the increase in PPAR delta expression induced by digoxin in the heart using the H9c2 cell line. Br J Pharmacol 163:390–398

    Article  CAS  PubMed  Google Scholar 

  73. Chen ZC, Yu BC, Chen LJ et al (2012) Increase of peroxisome proliferator-activated receptor δ (PPARδ) by digoxin to improve lipid metabolism in the heart of diabetic rats. Horm Metab Res

    Google Scholar 

  74. Shkryl VM, Shirokova N (2006) Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281:1547–1554

    Article  CAS  PubMed  Google Scholar 

  75. Schaeffer PJ, Wende AR, Magee CJ et al (2004) Calcineurin and calcium/calmodulin-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem 279:39593–39603

    Article  CAS  PubMed  Google Scholar 

  76. Tate CA, Hyek MF, Taffet GE (1991) The role of calcium in the energetics of contracting skeletal muscle. Sports Med 12:208–217

    Article  CAS  PubMed  Google Scholar 

  77. Tan CK, Chong HC, Tan EH et al (2012) Getting ‘Smad’ about obesity and diabetes. Nutr Diabetes 2:e29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juei-Tang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, YX., Cheng, KC., Cheng, JT. (2014). Role of PPAR-δ in Diabetic Cardiomyopathy. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_12

Download citation

Publish with us

Policies and ethics