Skip to main content

Metabolic Alterations in Diabetic Cardiomyopathy

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Abstract

Diabetes mellitus causes cardiomyopathy in diabetic patients and is an important and dominant risk factor for congestive heart failure. With the growing prevalence of diabetes in Canada and throughout the world, diabetic cardiomyopathy is a significant public health issue. Diabetic cardiomyopathy has been defined as myocardial dysfunction that occurs in a diabetic milieu independent of identified causes such as coronary atherosclerosis, hypertension, or valvular heart disease. Alterations in ventricular structure as well as left ventricular systolic and diastolic dysfunctions have been reported in diabetic patients despite well-controlled glycemic levels and disease free coronary vasculature. Metabolic abnormalities such as hyperlipidemia, hyperinsulinemia, and hyperglycemia predispose the heart to cellular, structural, and functional alterations that manifest as the cardiac phenotype observed in this diabetic population. These mechanisms are likely to act synergistically and are believed to potentiate one another. Hyperglycemia is an essential factor in the development of cardiomyopathy and exerts its effects by altering protein kinase C, increasing oxidative stress and causing abnormalities in lipid metabolism and calcium ion homeostasis. Regardless of the extensive information available on diabetic cardiomyopathy, translational research is scarce due to the lack of clinical trials, and therefore, much of our current knowledge is extrapolated from animal models. This review focuses on illustrating the various metabolic alterations that contribute to the development and progression of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (2009) IDF Diabetes Atlas, 4th edin

    Google Scholar 

  2. Public Health Agency of Canada (2011) Diabetes in Canada (2011): Facts and figures from a public health perspective

    Google Scholar 

  3. Department of Health and Human Services CfDCaP (2011) National Diabetes Fact Sheet, National Estimates and General Information on Diabetes and Prediabetes in the United States, Atlanta. GA

    Google Scholar 

  4. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    CAS  PubMed  Google Scholar 

  5. Karnik AA, Fields AV, Shannon RP (2007) Diabetic cardiomyopathy. Curr Hypertens Rep 9:467–473

    PubMed  Google Scholar 

  6. Cas AD, Spigoni V, Ridolfi V et al (2013) Diabetes and chronic heart failure: from diabetic cardiomyopathy to therapeutic approach. Endocr Metab Immune Disord Drug Targets 13:38–50

    CAS  Google Scholar 

  7. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34

    CAS  PubMed  Google Scholar 

  8. Stratton IM, Adler AI, Neil HA et al (2000) Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (United Kingdom Prospective Diabetes Study 35): prospective observational study. BMJ 321:405–412

    CAS  PubMed  Google Scholar 

  9. Gottdiener JS, Arnold AM, Aurigemma GP et al (2000) Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol 35:1628–1637

    CAS  PubMed  Google Scholar 

  10. Follath F (2007) University Hospital Zürich, Switzerland: ESC Congress 2007 Press Release

    Google Scholar 

  11. Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    PubMed  Google Scholar 

  12. Shao CH, Rozanski GJ, Patel KP et al (2007) Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J Mol Cell Cardiol 42:234–246

    CAS  PubMed  Google Scholar 

  13. Pereira L, Matthes J, Schuster I et al (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    CAS  PubMed  Google Scholar 

  14. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506

    CAS  PubMed  Google Scholar 

  15. Wang J, Song Y, Wang Q et al (2006) Causes and characteristics of diabetic cardiomyopathy. Rev Diabet Stud 3:108–117

    PubMed Central  PubMed  Google Scholar 

  16. Asghar O, Al-Sunni A, Khavandi K et al (2009) Diabetic cardiomyopathy. Clin Sci 116:741–760

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16:971–979

    PubMed  Google Scholar 

  18. Watanabe K, Thandavarayan RA, Harima M et al (2010) Role of differential signaling pathways and oxidative stress in diabetic cardiomyopathy. Curr Cardiol Rev 6:280–290

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rubler S, Dlugash J, Yuceoglu YZ et al (1972) A new type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    CAS  PubMed  Google Scholar 

  20. Adameova A, Dhalla NS (2013) Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev. doi:10.1007/s10741-013-9378-7

    Google Scholar 

  21. Shapiro LM (1982) Echocardiographic features of impaired ventricular function in diabetes mellitus. Br Heart J 47:439–444

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bertoni AG, Tsai A, Kasper EK et al (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case–control study. Diabetes Care 26:2791–2795

    PubMed  Google Scholar 

  23. Isfort M, Stevens SC, Schaffer S et al (2013) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. doi:10.1007/s10741-013-9377-8

    Google Scholar 

  24. Wold LE, Dutta K, Mason MM et al (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307

    CAS  PubMed  Google Scholar 

  25. Mizushige K, Yao L, Noma T et al (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907

    CAS  PubMed  Google Scholar 

  26. Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–H153

    CAS  PubMed  Google Scholar 

  27. Hoshida S, Yamashita N, Otsu K et al (2000) Cholesterol feeding exacerbates myocardial injury in Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 278:H256–H262

    CAS  PubMed  Google Scholar 

  28. Stratmann B, Gawlowski T, Tschoepe D (2010) Diabetic cardiomyopathy—to take a long story serious. Herz 35:161–168

    PubMed  Google Scholar 

  29. Devereux RB, Roman MJ, Paranicas M et al (2000) Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation 101:2271e6

    Google Scholar 

  30. Yotsukura M, Suzuki J, Yamaguchi T (1998) Prognosis following acute myocardial infarction in patients with ECG evidence of left ventricular hypertrophy prior to infarction. J Electrocardiol 31:91–99

    CAS  PubMed  Google Scholar 

  31. Boner G, Cooper ME, McCarroll K et al (2005) Adverse effects of left ventricular hypertrophy in the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. Diabetologia 48:1980–1987

    CAS  PubMed  Google Scholar 

  32. Quinones MA, Greenberg BH, Kopelen HA et al (2000) Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of left ventricular dysfunction. J Am Coll Cardiol 35:1237–1244

    CAS  PubMed  Google Scholar 

  33. de Simone G, Gottdiener JS, Chinali M et al (2008) Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health Study. Eur Heart J 29:741–747

    PubMed  Google Scholar 

  34. Ozasa N, Furukawa Y, Morimoto T et al (2008) Relation among left ventricular mass, insulin resistance, and hemodynamic parameters in type 2 diabetes. Hypertens Res 31:425–432

    PubMed  Google Scholar 

  35. Sundstrom J, Arnlov J, Stolare K et al (2008) Blood pressure-independent relations of left ventricular geometry to the metabolic syndrome and insulin resistance: a population-based study. Heart 94:874–878

    CAS  PubMed  Google Scholar 

  36. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    CAS  PubMed  Google Scholar 

  37. Schilling JD, Mann DL (2012) Diabetic cardiomyopathy: bend to bedside. Heart Fail Clin 8:619–631

    PubMed Central  PubMed  Google Scholar 

  38. Brutsaert DL, Housmans PR, Goethals MA (1980) Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res 47:637–652

    CAS  PubMed  Google Scholar 

  39. Voulgari C, Papadogiannis D, Tentolouris N (2010) Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 6:883–903

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    CAS  PubMed  Google Scholar 

  41. Giles TD, Sander GE (2004) Diabetes mellitus and heart failure: basic mechanisms, clinical features, and therapeutic considerations. Cardiol Clin 22:553–568

    PubMed  Google Scholar 

  42. Sander GE, Giles TD (2003) Diabetes mellitus and heart failure. Am Heart Hosp J 1:273–280

    PubMed  Google Scholar 

  43. Ommen SR, Nishimura RA (2003) A clinical approach to the assessment of left ventricular diastolic function by Doppler echocardiography: update. Heart 89:18–23

    Google Scholar 

  44. Raev DC (1994) Which left ventricular dysfunction is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type 1 diabetic patients. Diabetes Care 17:633–639

    CAS  PubMed  Google Scholar 

  45. Riggs TW, Transue D (1990) Doppler echocardiographic evaluation of left ventricular diastolic dysfunction in adolescents with diabetes mellitus. Am J Cardiol 65:899–902

    CAS  PubMed  Google Scholar 

  46. Li JE, Palmieri V, Roman MJ et al (2001) The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 37:1943–1949

    Google Scholar 

  47. Brogan WC III, Hillis LD, Flores ED et al (1992) The natural history of isolated left ventricular diastolic dysfunction. Am J Med 92:627–630

    PubMed  Google Scholar 

  48. Iribarren C, Karter AJ, Go AS (2001) Glycaemic control and heart failure among adult patients with diabetes. Circulation 103:2668–2673

    CAS  PubMed  Google Scholar 

  49. van Heerebeek L, Hamdani N, Handoko ML et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51

    PubMed  Google Scholar 

  50. Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448

    CAS  PubMed  Google Scholar 

  51. Zarich S, Nesto R (1989) Diabetic cardiomyopathy. Am Heart J 118:1000e12

    Google Scholar 

  52. Mildenberger RR, Bar-Shlomo B, Druck MN et al (1984) Clinically unrecognized dysfunction in young diabetic patient. J Am Coll Cardiol 4:234e8

    Google Scholar 

  53. Mbanya JC, Sobngwi E, Mbanya DS et al (2001) Left ventricular mass and systolic function in African diabetic patients: association with microalbuminuria. Diabetes Metab 27:378–382

    CAS  PubMed  Google Scholar 

  54. Petrie MC, Caruana L, Berry C et al (2002) “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction? Heart 87:29–31

    CAS  PubMed  Google Scholar 

  55. Fang ZY, Leano R, Marwick TH (2004) Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci 106:53–60

    PubMed  Google Scholar 

  56. Ha JW, Lee HC, Kang ES et al (2007) Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart 93:1571–1576

    PubMed  Google Scholar 

  57. Svealy BG, Olofsson EL, Andersson B (2008) Ventricular long-axis function is of major importance for long-term survival in patients with heart failure. Heart 94:284–289

    Google Scholar 

  58. Fang ZY, Schull-Meade R, Leano R et al (2005) Screening for heart disease in diabetic subjects. Am Heart J 149:349e54

    Google Scholar 

  59. Fang ZY, Yuda S, Anderson V et al (2003) Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 41:611e7

    Google Scholar 

  60. Yu CM, Lin H, Yang H et al (2002) Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation 105:1195e203

    Google Scholar 

  61. Maciver DH, Townsend M (2008) A novel mechanism of heart failure with normal ejection fraction. Heart 94:446–449

    CAS  PubMed  Google Scholar 

  62. Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation 113:296–304

    PubMed  Google Scholar 

  63. Zornoff LA, Skali H, Pfeffer MA et al (2002) Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 39:1450–1455

    PubMed  Google Scholar 

  64. Karamitsos TD, Karvounis HI, Dalamanga EG et al (2007) Early diastolic impairment of diabetic heart: the significance of right ventricle. Int J Cardiol 114:218e23

    Google Scholar 

  65. Movahed MR, Milne N (2007) Presence of biventricular dysfunction in patients with type II diabetes mellitus. Congest Heart Fail 13:78e80

    Google Scholar 

  66. Shehadeh A, Regan TJ (1995) Cardiac consequences of diabetes mellitus. Clin Cardiol 18:301–305

    CAS  PubMed  Google Scholar 

  67. Acar E, Ural D, Bildirici U et al (2011) Diabetic cardiomyopathy. Anadolu Kardiyol Derg 11:732–737

    PubMed  Google Scholar 

  68. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    PubMed  Google Scholar 

  69. Lopaschuk GD (2002) Metabolic abnormalities in the diabetic heart. Heart Fail Rev 7:149–159

    CAS  PubMed  Google Scholar 

  70. Carroll R, Carley AN, Dyck JR et al (2005) Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts. Am J Physiol Endocrinol Metab 288:E900–E906

    CAS  PubMed  Google Scholar 

  71. Herrero P, Peterson LR, McGill JB et al (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 47:598–604

    CAS  PubMed  Google Scholar 

  72. Peterson LR, Herrero P, Schechtman KB et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196

    PubMed  Google Scholar 

  73. Mazumder PK, O’Neill BT, Roberts MW et al (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin resistant ob/ob mouse hearts. Diabetes 53:2366–2374

    CAS  PubMed  Google Scholar 

  74. Dirkx E, Schwenk RW, Glatz JF et al (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85:219–225

    CAS  PubMed  Google Scholar 

  75. Sharma S, Adrogue JV, Golfman L et al (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700

    CAS  PubMed  Google Scholar 

  76. Szczepaniak LS, Dobbins RL, Metzger GJ et al (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49:417–423

    CAS  PubMed  Google Scholar 

  77. Murray AJ, Anderson RE, Watson GC et al (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788

    CAS  PubMed  Google Scholar 

  78. Opie LH (1970) Effect of fatty acids on contractility and rhythm of the heart. Nature 227: 1055–1056

    CAS  PubMed  Google Scholar 

  79. Nakayama H, Morozumi T, Nanto S et al (2001) Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart. Jpn Circ J 65:783–787

    CAS  PubMed  Google Scholar 

  80. Yazaki Y, Isobe M, Takahashi W et al (1999) Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123i bmipp spect: correlation with clinicopathological findings and clinical course. Heart 81:153–159

    CAS  PubMed  Google Scholar 

  81. Abe T, Ohga Y, Tabayashi N et al (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol 282:H138–H148

    CAS  PubMed  Google Scholar 

  82. Malhotra A, Reich D, Nakouzi A et al (1997) Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 81:1027–1033

    CAS  PubMed  Google Scholar 

  83. Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    CAS  PubMed  Google Scholar 

  84. Halse R, Pearson SL, McCormack JG et al (2001) Effects of tumor necrosis factor-alpha on insulin action in cultured human muscle cells. Diabetes 50:1102–1109

    CAS  PubMed  Google Scholar 

  85. Zhang DX, Fryer RM, Hsu AK et al (2001) Production and metabolism of ceramide in normal and ischemicreperfused myocardium of rats. Basic Res Cardiol 96:267–274

    CAS  PubMed  Google Scholar 

  86. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: Part II. Potential mechanisms. Circulation 109:121

    Google Scholar 

  87. Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology 21:250–258

    CAS  PubMed  Google Scholar 

  88. Finck BN, Lehman JJ, Leone TC (2002) The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Chiu HC, Kovacs A, Blanton RM et al (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233

    CAS  PubMed  Google Scholar 

  90. Yagyu H, Chen G, Yokoyama M et al (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 111: 419–426

    PubMed Central  PubMed  Google Scholar 

  91. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    CAS  PubMed  Google Scholar 

  92. Liu GX, Hanley PJ, Ray J et al (2001) Long-chain acylcoenzyme A esters and fatty acids directly link metabolism to K (ATP) channels in the heart. Circ Res 88:918–924

    CAS  PubMed  Google Scholar 

  93. Calle MC, Fernandez ML (2012) Inflammation and type 2 diabetes. Diabetes Metab 38:183–191

    CAS  PubMed  Google Scholar 

  94. King KL, Okere IC, Sharma N et al (2005) Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. Am J Physiol Heart Circ Physiol 289:H1033–H1037

    CAS  PubMed  Google Scholar 

  95. Kim JK, Kim YJ, Fillmore JJ et al (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Rui L, Aguirre V, Kim JK et al (2001) Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    CAS  PubMed  Google Scholar 

  98. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910

    CAS  PubMed  Google Scholar 

  99. Schwartzbauer G, Robbins J (2001) The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 276:35786–35793

    CAS  PubMed  Google Scholar 

  100. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Iozzo P, Chareonthaitawee P, Dutka D et al (2002) Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 51:3020–3024

    CAS  PubMed  Google Scholar 

  102. Bonora E, Targher G, Alberiche M et al (2002) Predictors of insulin sensitivity in type 2 diabetes mellitus. Diabet Med 19:535–542

    CAS  PubMed  Google Scholar 

  103. Ilercil A, Devereux RB, Roman MJ et al (2002) Associations of insulin levels with left ventricular structure and function in Am Indians: the strong heart study. Diabetes 51: 1543–1547

    CAS  PubMed  Google Scholar 

  104. Iacobellis G, Ribaudo MC, Zappaterreno A (2003) Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity. Obes Res 11:518–524

    PubMed  Google Scholar 

  105. McNulty PH (2003) Insulin resistance and cardiac mass: the end of the beginning? Obes Res 11:507–508

    PubMed  Google Scholar 

  106. Liang Q, Carlson EC, Donthi RV et al (2002) Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51:174–181

    CAS  PubMed  Google Scholar 

  107. Galderisi M, Paolisso G, Tagliamonte MR et al (1997) Is insulin action a determinant of left ventricular relaxation in uncomplicated essential hypertension? J Hypertens 15:745–750

    CAS  PubMed  Google Scholar 

  108. Guida L, Celentano A, Iannuzzi R et al (2001) Insulin resistance, ventricular mass and function in normoglycaemic hypertensives. Nutr Metab Cardiovasc Dis 11:306–311

    CAS  PubMed  Google Scholar 

  109. O’Neill BT, Abel ED (2005) Akt1 in the cardiovascular system: friend or foe? J Clin Invest 115:2059–2064

    PubMed Central  PubMed  Google Scholar 

  110. Khamzina L, Veilleux A, Bergeron S et al (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481

    CAS  PubMed  Google Scholar 

  111. Manning BD (2004) Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    CAS  PubMed  Google Scholar 

  112. Pulakat L, Demarco VG, Whaley-Connell A et al (2011) The impact of overnutrition on insulin metabolic signaling in the heart and the kidney. Cardiorenal Med 1:102–112

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Kern W, Peters A, Born J et al (2005) Changes in blood pressure and plasma catecholamine levels during prolonged hyperinsulinemia. Metabolism 54:391–396

    CAS  PubMed  Google Scholar 

  114. Grassi G (2004) Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens 13:513–519

    PubMed  Google Scholar 

  115. Morisco C, Condorelli G, Trimarco V et al (2005) Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res 96:180–188

    CAS  PubMed  Google Scholar 

  116. Naito Z, Takashi E, Xu G et al (2003) Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase 1/2 in rat heart. Exp Mol Pathol 74:23–32

    CAS  PubMed  Google Scholar 

  117. Tajmir P, Ceddia RB, Li RK et al (2004) Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinaseand phosphatidylinositol 3-kinase-dependent signaling pathways. Endocrinology 145:1550–1555

    CAS  PubMed  Google Scholar 

  118. Paolisso G, Tagliamonte MR, Galderisi M (1999) Plasma leptin level is associated with myocardial wall thickness in hypertensive insulin-resistant men. Hypertension 34:1047–1052

    CAS  PubMed  Google Scholar 

  119. Wang CC, Goalstone ML, Draznin B (2004) Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 53:2735–2740

    CAS  PubMed  Google Scholar 

  120. Schmitz-Peiffer C (2000) Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 12:583–594

    CAS  PubMed  Google Scholar 

  121. Baumann CA, Ribon V, Kanzaki M et al (2000) Cap defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207

    CAS  PubMed  Google Scholar 

  122. Coutinho M, Gerstein HC, Wang Y et al (1999) The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22:233–240

    CAS  PubMed  Google Scholar 

  123. Mytas DZ, Stougiannos PN, Zairis MN et al (2009) Diabetic myocardial disease: pathophysiology, early diagnosis and therapeutic options. J Diabetes Complications 23:273–282

    PubMed  Google Scholar 

  124. Suskin N, McKelvie RS, Burns RJ et al (2000) Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J 21:1368–1375

    CAS  PubMed  Google Scholar 

  125. Giles TD, Ouyang J, Kerut EK et al (1998) Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274(1 pt 2): H295–H307

    CAS  PubMed  Google Scholar 

  126. Giles TD (2001) Angiotensin I-converting enzyme/kinase II dysregulation in cardiovascular complications of diabetes mellitus. In: Giles TD (ed) Angiotensin converting enzyme: clinical and experimental insights. Health Care Communications, Fort Lee, pp 135–144

    Google Scholar 

  127. Turan B (2010) Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol 11:819–836

    CAS  PubMed  Google Scholar 

  128. Imrie H, Abbas A, Kearney M (2010) Insulin resistance, lipotoxicity and endothelial dysfunction. Biochim Biophys Acta 1801:320–326

    CAS  PubMed  Google Scholar 

  129. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    CAS  PubMed  Google Scholar 

  130. Gao WD, Liu Y, Marban E (1996) Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 42:2597e604

    Google Scholar 

  131. Du X, Matsumura T, Edelstein D (2003) Inhibition of GADPH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049e57

    Google Scholar 

  132. Szabo C (2002) PARP as a drug target for the therapy of diabetic cardiovascular dysfunction. Drug News Perspect 15:197e205

    Google Scholar 

  133. Mellor H, Parker PJ (1998) The extended protein kinase C super-family. Biochem J 332 (Pt 2):281–292

    CAS  PubMed  Google Scholar 

  134. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Way KJ, Katai N, King GL (2001) Protein kinase C and the development of diabetic vascular complications. Diabet Med 18:945–959

    CAS  PubMed  Google Scholar 

  136. Hayat SA, Patel B, Khattar RS et al (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond) 107:539–557

    CAS  Google Scholar 

  137. Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA 288:2579–2588

    CAS  PubMed  Google Scholar 

  138. Pratt RE (1999) Angiotensin II and the control of cardiovascular structure. J Am Soc Nephrol 10:S120–S128

    CAS  PubMed  Google Scholar 

  139. He Z, Way KJ, Arikawa E et al (2005) Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium. J Biol Chem 280:15719–15726

    CAS  PubMed  Google Scholar 

  140. Way KJ, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718

    CAS  PubMed  Google Scholar 

  141. Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325

    CAS  PubMed  Google Scholar 

  142. Takeishi Y, Chu G, Kirkpatrick DM et al (1998) In vivo phosphorylation of cardiac troponin I by protein kinase Cbeta2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J Clin Invest 102:72–78

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137

    CAS  PubMed  Google Scholar 

  144. Retnakaran R, Zinman B (2008) Type 1 diabetes, hyperglycaemia, and the heart. Lancet 371:1790–1799

    CAS  PubMed  Google Scholar 

  145. Ginsberg BJ, Mazze R (1994) Clinical consequences of the Diabetes Control and Complications Trial. N J Med 91:221–224

    CAS  PubMed  Google Scholar 

  146. Brunner F, Bras-Silva C, Cerdeira AS et al (2006) Cardiovascular endothelins: essential regulators of cardiovascular homeostasis. Pharmacol Ther 111:508–531

    CAS  PubMed  Google Scholar 

  147. Frustaci A, Kajstura J, Chimenti C et al (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132

    CAS  PubMed  Google Scholar 

  148. Shimizu M, Umeda K, Sugihara N et al (1993) Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 46:32–36

    CAS  PubMed  Google Scholar 

  149. John WG, Lamb EJ (1993) The Maillard or browning reaction in diabetes. Eye 7:230–237

    PubMed  Google Scholar 

  150. Raj DS, Choudhury D, Welbourne TC et al (2000) Advanced glycation end products: a nephrologist’s perspective. Am J Kidney Dis 35:365–380

    CAS  PubMed  Google Scholar 

  151. Miyata T, Kurokawa K, Van Ypersele De Strihou C (2000) Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 9:1744–1752

    Google Scholar 

  152. Candido R, Forbes JM, Thomas MC et al (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 18:785–792

    Google Scholar 

  153. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    CAS  PubMed  Google Scholar 

  154. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12

    CAS  PubMed  Google Scholar 

  155. Dyer DG, Dunn JA, Thorpe SR et al (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463–2469

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Bierhaus A, Hofmann MA, Ziegler R et al (1998) The AGE/RAGE pathway in vascular disease and diabetes mellitus. Part I. The AGE-concept. Cardiovasc Res 37:586–600

    CAS  PubMed  Google Scholar 

  157. Petrova R, Yamamoto Y, Muraki K et al (2002) Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 34:1425–1431

    CAS  PubMed  Google Scholar 

  158. Koyama Y, Takeishi Y, Niizeki T et al (2008) Soluble receptor for advanced glycation end products (RAGE) is a prognostic factor for heart failure. J Card Fail 14:133–139

    CAS  PubMed  Google Scholar 

  159. Malhotra A, Sanghi V (1997) Regulation of contractile proteins in diabetic heart. Cardiovas Res 34:34–40

    CAS  Google Scholar 

  160. Teshima Y, Takahashi N, Saikawa T et al (2000) Diminished expression of sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine sensitive Ca(2+) channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32:655–664

    CAS  PubMed  Google Scholar 

  161. Choi KM, Zhong Y, Hoit BD et al (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283: H1398–H1408

    CAS  PubMed  Google Scholar 

  162. Trost SU, Belke DD, Bluhm WF et al (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-atpase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171

    CAS  PubMed  Google Scholar 

  163. Golfman L, Dixon IM, Takeda N et al (1998) Cardiac sarcolemmal Na(+)-Ca2+ exchange and Na(+)-K+ ATPase activities and gene expression in alloxaninduced diabetes in rats. Mol Cell Biochem 188:91–101

    CAS  PubMed  Google Scholar 

  164. Vetter R, Rehfeld U, Reissfelder C et al (2002) Transgenic overexpression of the sarcoplasmic reticulum Ca2+ ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts. FASEB J 16:1657–1659

    CAS  PubMed  Google Scholar 

  165. Tang WH, Cheng WT, Kravtsov GM et al (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol Cell Physiol 299:C643–C653

    CAS  PubMed  Google Scholar 

  166. Jweied EE, McKinney RD, Walker LA et al (2005) Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289:H2478–H2483

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

 The infrastructure for the work in this article was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder S. Jassal M.D., FACC, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bordun, KA.M., Jassal, D.S., Dhalla, N.S. (2014). Metabolic Alterations in Diabetic Cardiomyopathy. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_1

Download citation

Publish with us

Policies and ethics