Skip to main content

Neuronal Death Mechanisms in Development and Disease

  • Chapter
  • First Online:
Cell Death

Abstract

In this chapter we cover several distinct aspects of neuronal cell death. Apoptosis, or programmed cell death, is incredibly important for shaping a properly organized nervous system during development. However, unlike most other cell types, neurons must survive for the lifetime of the organism and therefore possess multiple, unique ways to tightly regulate cell death pathways. Neurons employ several distinct “brakes” within the apoptotic pathway to prevent unwanted cell loss and utilize signaling pathways mediated by dependence receptors and the p75 Neurotrophin Receptor to fine-tune survival and death outcomes during development. In addition, neurons undergo dynamic changes to restrict the apoptotic pathway as they mature and become fully integrated into the adult nervous system. Interestingly, several components of cell death machinery also have critical nonapoptotic roles in neurons, such as modulating synaptic plasticity or mediating neurite pruning to ensure the establishment of precise neuronal circuitry. Lastly, we provide a broad overview of the complex and multiple cell death mechanisms seen in neurons after injury and in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci. 2006;15:1–35.

    Google Scholar 

  2. Hamburger V, Levi-Montalcini R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool. 1949;111(3):457–501.

    PubMed  CAS  Google Scholar 

  3. Cohen S, Levi-Montalcini R, Hamburger V. A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci U S A. 1954;40(10):1014–8.

    PubMed  CAS  Google Scholar 

  4. Levi-Montalcini R, Cohen S. In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci U S A. 1956;42(9):695–9.

    PubMed  CAS  Google Scholar 

  5. Levi-Montalcini R, Booker B. Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc Natl Acad Sci U S A. 1960;46(3):373–84.

    PubMed  CAS  Google Scholar 

  6. Aloe L, Rita LM. The discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 2004;14(7):395–9.

    PubMed  CAS  Google Scholar 

  7. Northcutt RG. Body and brain. A tropic theory of neural connections. Dale Purves. Harvard University Press, Cambridge, MA, 1988. viii, 231 pp. Science. 1989;244(4907):93.

    Google Scholar 

  8. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802–9.

    PubMed  CAS  Google Scholar 

  9. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299–309.

    PubMed  CAS  Google Scholar 

  10. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14(23):2919–37.

    PubMed  CAS  Google Scholar 

  11. Baloh RH, Enomoto H, Johnson Jr EM, Milbrandt J. The GDNF family ligands and receptors — implications for neural development. Curr Opin Neurobiol. 2000;10(1):103–10.

    PubMed  CAS  Google Scholar 

  12. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007;8(3):221–32.

    PubMed  CAS  Google Scholar 

  13. Kuan CY, Roth KA, Flavell RA, Rakic P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 2000;23(7):291–7.

    PubMed  CAS  Google Scholar 

  14. Voyvodic JT. Cell death in cortical development: how much? Why? So what? Neuron. 1996;16(4):693–6.

    PubMed  CAS  Google Scholar 

  15. Kim WR, Sun W. Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ. 2011;53(2):225–35.

    PubMed  Google Scholar 

  16. Putcha GV, Johnson Jr EM. Men are but worms: neuronal cell death in C elegans and vertebrates. Cell Death Differ. 2004;11(1):38–48.

    PubMed  CAS  Google Scholar 

  17. Mota M, Reeder M, Chernoff J, Bazenet CE. Evidence for a role of mixed lineage kinases in neuronal apoptosis. J Neurosci. 2001;21(14):4949–57.

    PubMed  CAS  Google Scholar 

  18. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson Jr EM. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol. 1994;127(6 Pt. 1):1717–27.

    PubMed  CAS  Google Scholar 

  19. Eilers A, Whitfield J, Babij C, Rubin LL, Ham J. Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci. 1998;18(5):1713–24.

    PubMed  CAS  Google Scholar 

  20. Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M. Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem. 1997;272(30):18842–8.

    PubMed  CAS  Google Scholar 

  21. Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol. 2001;21(14):4713–24.

    PubMed  CAS  Google Scholar 

  22. Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 1995;14(5):927–39.

    PubMed  CAS  Google Scholar 

  23. Harris CA, Johnson Jr EM. BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem. 2001;276(41):37754–60.

    PubMed  CAS  Google Scholar 

  24. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron. 2001;29(3):629–43.

    PubMed  CAS  Google Scholar 

  25. Kristiansen M, Menghi F, Hughes R, Hubank M, Ham J. Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death. BMC Genomics. 2011;12:551.

    PubMed  CAS  Google Scholar 

  26. Deckwerth TL, Elliott JL, Knudson CM, Johnson Jr EM, Snider WD, Korsmeyer SJ. BAX is required for neuronal death after tropic factor deprivation and during development. Neuron. 1996;17(3):401–11.

    PubMed  CAS  Google Scholar 

  27. Deshmukh M, Kuida K, Johnson Jr EM. Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol. 2000;150(1):131–43.

    PubMed  CAS  Google Scholar 

  28. Wright KM, Vaughn AE, Deshmukh M. Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death Differ. 2007;14(3):625–33.

    PubMed  CAS  Google Scholar 

  29. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922–33.

    PubMed  CAS  Google Scholar 

  30. Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC, Sebe JY, et al. Intrinsically determined cell death of developing cortical interneurons. Nature. 2012;491(7422):109–13.

    PubMed  CAS  Google Scholar 

  31. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 1998;94(6):739–50.

    PubMed  CAS  Google Scholar 

  32. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998 ;94(3):325–37.

    PubMed  CAS  Google Scholar 

  33. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996;384(6607):368–72.

    PubMed  CAS  Google Scholar 

  34. Wright KM, Deshmukh M. Restricting apoptosis for postmitotic cell survival and its relevance to cancer. Cell Cycle. 2006;5(15):1616–20.

    PubMed  CAS  Google Scholar 

  35. Sun YF, Yu LY, Saarma M, Timmusk T, Arumae U. Neuron-specific Bcl-2 homology 3 domain-only splice variant of Bak is anti-apoptotic in neurons, but pro-apoptotic in non-neuronal cells. J Biol Chem. 2001;276(19):16240–7.

    PubMed  CAS  Google Scholar 

  36. Uo T, Kinoshita Y, Morrison RS. Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis. J Biol Chem. 2005;280(10):9065–73.

    PubMed  CAS  Google Scholar 

  37. Ham J, Towers E, Gilley J, Terzano S, Randall R. BH3-only proteins: key regulators of neuronal apoptosis. Cell Death Differ. 2005;12(8):1015–20.

    PubMed  CAS  Google Scholar 

  38. Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol. 2008;10(12):1477–83.

    PubMed  CAS  Google Scholar 

  39. Kirkland RA, Franklin JL. Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxid Redox Signal. 2003;5(5):589–96.

    PubMed  CAS  Google Scholar 

  40. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M. Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol. 2003;163(4):789–99.

    PubMed  CAS  Google Scholar 

  41. Wright KM, Linhoff MW, Potts PR, Deshmukh M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J Cell Biol. 2004;167(2):303–13.

    PubMed  CAS  Google Scholar 

  42. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, et al. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol. 1999;144(5):883–9.

    PubMed  CAS  Google Scholar 

  43. Oppenheim RW. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 1989;12(7):252–5.

    PubMed  CAS  Google Scholar 

  44. Bredesen DE, Mehlen P, Rabizadeh S. Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev. 2004;84(2):411–30.

    PubMed  CAS  Google Scholar 

  45. Goldschneider D, Mehlen P. Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene. 2010;29(13):1865–82.

    PubMed  CAS  Google Scholar 

  46. Ichim G, Tauszig-Delamasure S, Mehlen P. Neurotrophins and cell death. Exp Cell Res. 2012;318(11):1221–8.

    PubMed  CAS  Google Scholar 

  47. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395(6704):801–4.

    PubMed  CAS  Google Scholar 

  48. Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A. 2001;98(6):3416–21.

    PubMed  CAS  Google Scholar 

  49. Furne C, Rama N, Corset V, Chédotal A, Mehlen P. Netrin-1 is a survival factor during commissural neuron navigation. Proc Natl Acad Sci. 2008;105(38):14465–70.

    PubMed  CAS  Google Scholar 

  50. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M, et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000;19(15):4056–63.

    PubMed  CAS  Google Scholar 

  51. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467(7311):59–63. doi:10.1038/nature09336.

    PubMed  CAS  Google Scholar 

  52. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10(3):381–91.

    PubMed  CAS  Google Scholar 

  53. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    PubMed  CAS  Google Scholar 

  54. Barker PA. p75NTR is positively promiscuous: novel partners and new insights. Neuron. 2004;42(4):529–33.

    PubMed  CAS  Google Scholar 

  55. Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol. 1998;140(4):911–23.

    PubMed  CAS  Google Scholar 

  56. Kenchappa RS, Zampieri N, Chao MV, Barker PA, Teng HK, Hempstead BL, et al. Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron. 2006;50(2):219–32.

    PubMed  CAS  Google Scholar 

  57. Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, et al. p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem. 2010;285(26):20358–68.

    PubMed  CAS  Google Scholar 

  58. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–8.

    PubMed  CAS  Google Scholar 

  59. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427(6977):843–8. doi:10.1038/nature02319.

    PubMed  CAS  Google Scholar 

  60. Ibáñez CF, Simi A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci. 2012;35(7):431–40.

    PubMed  Google Scholar 

  61. Levi-Montalcini R, Booker B. Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci U S A. 1960;46(3):384–91.

    PubMed  CAS  Google Scholar 

  62. Angeletti PU, Levi-Montalcini R, Caramia F. Analysis of the effects of the antiserum to the nerve growth factor in adult mice. Brain Res. 1971;27(2):343–55.

    PubMed  CAS  Google Scholar 

  63. Easton RM, Deckwerth TL, Parsadanian AS, Johnson Jr EM. Analysis of the mechanism of loss of tropic factor dependence associated with neuronal maturation: a phenotype indistinguishable from Bax deletion. J Neurosci. 1997;17(24):9656–66.

    PubMed  CAS  Google Scholar 

  64. Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011;25(2):125–30.

    PubMed  CAS  Google Scholar 

  65. Wright KM, Smith MI, Farrag L, Deshmukh M. Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. J Cell Biol. 2007;179(5):825–32.

    PubMed  CAS  Google Scholar 

  66. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao W-L, Yoshihara K, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci. 2001;21(19):7439–46.

    PubMed  CAS  Google Scholar 

  67. Johnson CE, Huang YY, Parrish AB, Smith MI, Vaughn AE, Zhang Q, et al. Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci U S A. 2007;104(52):20820–5.

    PubMed  CAS  Google Scholar 

  68. Donovan M, Cotter TG. Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ. 2002;9(11):1220–31.

    PubMed  CAS  Google Scholar 

  69. Ota K, Yakovlev AG, Itaya A, Kameoka M, Tanaka Y, Yoshihara K. Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. J Biochem. 2002;131(1):131–5.

    PubMed  CAS  Google Scholar 

  70. Liu CL, Siesjo BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience. 2004;127(1):113–23.

    PubMed  CAS  Google Scholar 

  71. Perrelet D, Perrin FE, Liston P, Korneluk RG, MacKenzie A, Ferrer-Alcon M, et al. Motoneuron resistance to apoptotic cell death in vivo correlates with the ratio between X-linked inhibitor of apoptosis proteins (XIAPs) and its inhibitor, XIAP-associated factor 1. J Neurosci. 2004;24(15):3777–85.

    PubMed  CAS  Google Scholar 

  72. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating drosophila sensory neuron dendrite pruning. Neuron. 2006;51(3):283–90.

    PubMed  CAS  Google Scholar 

  73. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci. 2006;9(10):1234–6.

    PubMed  CAS  Google Scholar 

  74. Rumpf S, Lee SB, Jan LY, Jan YN. Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development. 2011;138(6):1153–60.

    PubMed  CAS  Google Scholar 

  75. Huesmann GR, Clayton DF. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron. 2006;52(6):1061–72.

    PubMed  CAS  Google Scholar 

  76. Luo L, O’Leary DD. Axon retraction and degeneration in development and disease. Annu Rev Neurosci. 2005;28:127–56.

    PubMed  CAS  Google Scholar 

  77. Low LK, Cheng HJ. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Phil Trans Royal Soc B Biol Sci. 2006;361(1473):1531–44.

    CAS  Google Scholar 

  78. Schoenmann Z, Assa-Kunik E, Tiomny S, Minis A, Haklai-Topper L, Arama E, et al. Axonal degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and mammals. J Neurosci. 2010;30(18):6375–86.

    PubMed  CAS  Google Scholar 

  79. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981–9.

    PubMed  CAS  Google Scholar 

  80. Vohra BPS, Sasaki Y, Miller BR, Chang J, DiAntonio A, Milbrandt J. Amyloid precursor protein cleavage-dependent and -independent axonal degeneration programs share a common nicotinamide mononucleotide adenylyltransferase 1-sensitive pathway. J Neurosci. 2010;30(41):13729–38.

    PubMed  CAS  Google Scholar 

  81. Pazyra-Murphy MF, Hans A, Courchesne SL, Karch C, Cosker KE, Heerssen HM, et al. A retrograde neuronal survival response: target-derived neurotrophins regulate MEF2D and bcl-w. J Neurosci. 2009;29(20):6700–9.

    PubMed  CAS  Google Scholar 

  82. Courchesne SL, Karch C, Pazyra-Murphy MF, Segal RA. Sensory neuropathy attributable to loss of Bcl-w. J Neurosci. 2011;31(5):1624–34.

    PubMed  CAS  Google Scholar 

  83. Cosker KE, Pazyra-Murphy MF, Fenstermacher SJ, Segal RA. Target-derived neurotrophins coordinate transcription and transport of Bclw to prevent axonal degeneration. J Neurosci. 2013;33(12):5195–207.

    PubMed  CAS  Google Scholar 

  84. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, et al. A caspase cascade regulating developmental axon degeneration. J Neurosci. 2012;32(49):17540–53.

    PubMed  CAS  Google Scholar 

  85. Akpan N, Serrano-Saiz E, Zacharia BE, Otten ML, Ducruet AF, Snipas SJ, et al. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci. 2011;31(24):8894–904.

    PubMed  CAS  Google Scholar 

  86. Uribe V, Wong BKY, Graham RK, Cusack CL, Skotte NH, Pouladi MA, et al. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6 deficient mice. Hum Mol Genet. 2012;21:1954–67.

    PubMed  CAS  Google Scholar 

  87. Li Z, Jo J, Jia J-M, Lo S-C, Whitcomb DJ, Jiao S, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 2010;141(5):859–71.

    PubMed  CAS  Google Scholar 

  88. Jiao S, Li Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron. 2011;70(4):758–72.

    PubMed  CAS  Google Scholar 

  89. Schon Eric A, Przedborski S. Mitochondria: the next (neurode)generation. Neuron. 2011;70(6):1033–53.

    PubMed  CAS  Google Scholar 

  90. Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13(6):395–406. doi:10.1038/nrn3228.

    PubMed  CAS  Google Scholar 

  91. Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004;35(9):2189–94.

    PubMed  Google Scholar 

  92. Cavallucci V, D’Amelio M, Cecconi F. Aβ toxicity in Alzheimer’s disease. Mol Neurobiol. 2012;45(2):366–78.

    PubMed  CAS  Google Scholar 

  93. Matsui T, Ramasamy K, Ingelsson M, Fukumoto H, Conrad C, Frosch MP, et al. Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable abeta42 levels. J Neuropathol Exp Neurol. 2006;65(5):508–15.

    PubMed  CAS  Google Scholar 

  94. Hyman BT. Caspase activation without apoptosis: insight into Abeta initiation of neurodegeneration. Nat Neurosci. 2011;14(1):5–6.

    PubMed  CAS  Google Scholar 

  95. Halawani D, Tessier S, Anzellotti D, Bennett DA, Latterich M, LeBlanc AC. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer’s disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. J Neurosci. 2010;30(17):6132–42.

    PubMed  CAS  Google Scholar 

  96. Albrecht S, Bogdanovic N, Ghetti B, Winblad B, LeBlanc AC. Caspase-6 activation in familial alzheimer disease brains carrying amyloid precursor protein or presenilin i or presenilin II mutations. J Neuropathol Exp Neurol. 2009;68(12):1282–93.

    PubMed  CAS  Google Scholar 

  97. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol. 2004;165(2):523–31.

    PubMed  CAS  Google Scholar 

  98. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J Biol Chem. 1999;274(33):23426–36.

    PubMed  CAS  Google Scholar 

  99. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci. 2011;14(1):69–76. doi:10.1038/nn.2709.

    PubMed  Google Scholar 

  100. de Calignon A, Spires-Jones TL, Hyman BT. [Caspase activation precedes and leads to neurodegeneration in a murine model of Alzheimer’s disease]. Med Sci (Paris). 2010;26(10):787–9.

    Google Scholar 

  101. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain. 2011;4:3.

    PubMed  CAS  Google Scholar 

  102. Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci. 2011;34(12):646–56.

    PubMed  CAS  Google Scholar 

  103. Reddy PH. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res. 2011;1415:136–48.

    PubMed  CAS  Google Scholar 

  104. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010;120(2):131–43.

    PubMed  CAS  Google Scholar 

  105. Alves da Costa C, Paitel E, Vincent B, Checler F. α-synuclein lowers p53-dependent apoptotic response of neuronal cells: abolishment by 6-hydroxydopamine and implication for Parkinson’s disease. J Biol Chem. 2002;277(52):50980–4.

    PubMed  CAS  Google Scholar 

  106. Li W, Lee MK. Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity. J Neurochem. 2005;93(6):1542–50.

    PubMed  CAS  Google Scholar 

  107. Arduino DM, Esteves AR, Cardoso SM. Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis. 2011;2011:767230.

    PubMed  Google Scholar 

  108. Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi RE, et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet. 2001;10(9):919–26.

    PubMed  CAS  Google Scholar 

  109. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5.

    PubMed  CAS  Google Scholar 

  110. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, et al. Missing pieces in the Parkinson’s disease puzzle. Nat Med. 2010;16(6):653–61.

    PubMed  CAS  Google Scholar 

  111. Venderova K, Park DS. Programmed Cell Death in Parkinson’s Disease. Cold Spring Harbor Persp Med. 2012;2(8)

    Google Scholar 

  112. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002;297(5579):259–63.

    PubMed  CAS  Google Scholar 

  113. Burguillos MA, Hajji N, Englund E, Persson A, Cenci AM, Machado A, et al. Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: evidence in Parkinson’s disease patients. Neurobiol Dis. 2011;41(1):177–88.

    PubMed  CAS  Google Scholar 

  114. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342(3):619–30.

    PubMed  CAS  Google Scholar 

  115. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    PubMed  CAS  Google Scholar 

  116. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276(5319):1699–702.

    PubMed  CAS  Google Scholar 

  117. Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci. 2002;193(2):73–8.

    PubMed  CAS  Google Scholar 

  118. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38(1):73–84.

    PubMed  CAS  Google Scholar 

  119. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2(11):806–19.

    PubMed  CAS  Google Scholar 

  120. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science. 2000;288(5464):335–9.

    PubMed  CAS  Google Scholar 

  121. Vukosavic S, Stefanis L, Jackson-Lewis V, Guegan C, Romero N, Chen C, et al. Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2000;20(24):9119–25.

    PubMed  CAS  Google Scholar 

  122. Sathasivam S, Shaw PJ. Apoptosis in amyotrophic lateral sclerosis–what is the evidence? Lancet Neurol. 2005;4(8):500–9.

    PubMed  CAS  Google Scholar 

  123. Johri A, Beal MF. Antioxidants in Huntington’s disease. Biochim Biophys Acta. 2012;1822(5):664–74.

    PubMed  CAS  Google Scholar 

  124. Estrada Sanchez AM, Mejia-Toiber J, Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res. 2008;39(3):265–76.

    PubMed  CAS  Google Scholar 

  125. Majumder P, Chattopadhyay B, Mazumder A, Das P, Bhattacharyya NP. Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein Hip1. Neurobiol Dis. 2006;22(2):242–56.

    PubMed  CAS  Google Scholar 

  126. Leyva MJ, Degiacomo F, Kaltenbach LS, Holcomb J, Zhang N, Gafni J, et al. Identification and evaluation of small molecule pan-caspase inhibitors in Huntington’s disease models. Chem Biol. 2010;17(11):1189–200.

    PubMed  CAS  Google Scholar 

  127. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell. 2006;125(6):1179–91.

    PubMed  CAS  Google Scholar 

  128. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 2010;1802(1):80–91.

    PubMed  CAS  Google Scholar 

  129. Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci. 2001;21(18):7127–34.

    PubMed  CAS  Google Scholar 

  130. Chapman KZ, Dale VQ, Denes A, Bennett G, Rothwell NJ, Allan SM, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29(11):1764–8.

    PubMed  Google Scholar 

  131. Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke. 2003;34(3):671–5.

    PubMed  CAS  Google Scholar 

  132. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci. 2012;13(4):267–78.

    PubMed  CAS  Google Scholar 

  133. Martinou J-C, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994;13(4):1017–30.

    PubMed  CAS  Google Scholar 

  134. Plesnila N, Zinkel S, Amin-Hanjani S, Qiu J, Korsmeyer SJ, Moskowitz MA. Function of BID – a molecule of the bcl-2 family – in ischemic cell death in the brain. Eur Surg Res. 2002;34(1–2):37–41.

    PubMed  CAS  Google Scholar 

  135. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A. 2011;108(27):10952–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cusack, C.L., Annis, R.P., Kole, A.J., Deshmukh, M. (2014). Neuronal Death Mechanisms in Development and Disease. In: Wu, H. (eds) Cell Death. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9302-0_8

Download citation

Publish with us

Policies and ethics