Techniques to Control Thin-Film Textures



In the last chapter, we discussed some possible origins of texture formation during growth, in particular, the selection of out-of-plane and in-plane crystal orientations when the flux is obliquely incident to the substrate. The exact angle of orientation depends on the incident flux angle. It has been shown that texture orientation as well as the morphology of the films can be controlled by dynamically varying the incident flux direction during deposition (He and Zhao, Nanoscale 3:2361–2375, 2011; Hawkeye and Brett, J. Vac. Sci. Technol. A 25:1317–1335, 2007; Karabacak and Lu, Handbook of Theoretical and Computational Nanotechnology, 729–779, 2005). This opens up endless possibilities for tailoring the desired texture for different applications. In this chapter, we will describe some of the strategies reported recently.


Pole Figure Crystal Orientation Fiber Texture Rest Time Incident Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abelmann, L., Lodder, C.: Oblique evaporation and surface diffusion. Thin Solid Films. 305, 1–21 (1997)CrossRefGoogle Scholar
  2. Alouach, H., Mankey, G.J.: Texture orientation of glancing angle deposited copper nanowire arrays. J. Vac. Sci. Technol. A 22, 1379–1382 (2004a)CrossRefGoogle Scholar
  3. Alouach, H., Mankey, G.J.: Epitaxial growth of copper nanowire arrays grown on H-terminated Si(110) using glancing-angle deposition. J. Mater. Res. 19(12), 3620–3625 (2004b)CrossRefGoogle Scholar
  4. Chen, L., Lu, T.-M., Wang, G.-C.: Biaxially textured Mo films with diverse morphologies by substrate-flipping rotation. Nanotechnology. 22(50), 505701–7 (2011)CrossRefGoogle Scholar
  5. Chen, L., Lu, T.-M., Wang, G.-C.: Incident flux angle induced crystal texture transformation in nanostructured molybdenum films. J. Appl. Phys. 112, 024303–8 (2012)CrossRefGoogle Scholar
  6. Chen, L., Andrea, L., Timalsina, Y.P., Wang, G.-C., Lu, T.-M.: Engineering epitaxial-nanospiral metal films using dynamic oblique angle deposition. J. Cryst. Growth Des. 13, 2075–2080 (2013)CrossRefGoogle Scholar
  7. Chudzik, M.P., Koritala, R.E., Luo, L.P., Miller, D.J., Balachandran, U., Kannewurf, C.R.: Mechanism and processing dependence of biaxial texture development in magnesium oxide thin films grown by inclined-substrate deposition. IEEE Trans. Appl. Supercond. 11, 3469–3472 (2001)Google Scholar
  8. Gaire, C., Snow, P., Chan, T.-L., Yuan, W., Riley, M., Liu, Y., Zhang, S.B., Wang, G.-C., Lu, T.-M.: Morphology and texture evolution of nanostructured CaF2 films on amorphous substrates under oblique incidence flux. Nanotechnology. 21, 445701-1-9 (2010)CrossRefGoogle Scholar
  9. Hawkeye, M.M., Brett, M.J.: Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films. J. Appl. Phys. 100, 044322-1-7 (2006)CrossRefGoogle Scholar
  10. Hawkeye, M.M., Brett, M.J.: Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)Google Scholar
  11. He, Y.-P., Zhao, Y.-P.: Advanced multi-component nanostructures designed by dynamic shadowing growth. Nanoscale. 3, 2361–2375 (2011)MathSciNetCrossRefGoogle Scholar
  12. Jensen, M.O., Brett, M.J.: Porosity engineering in glancing angle deposition thin films. Appl. Phys. A: Mater. Sci. Process. 80, 763–768 (2005)Google Scholar
  13. Karabacak, T., Lu, T.-M.: Shadowing growth and physical self-assembly of 3D columnar structures. In: Rieth, M., Schommers, W. (eds.) Handbook of theoretical and computational nanotechnology, vol. 9, pp. 729–779. American Scientific Publishers, Stevenson Ranch (2005). (Nanocomposites, Nano-Assemblies, Nanosurfaces, Chap. 69)Google Scholar
  14. Krishnan, R., Parker, T., Lee, S., Lu, T.-M.: The formation of vertically aligned biaxial tungsten nanorods using a novel shadowing growth technique. Nanotechnology. 20, 465609-1-6 (2009)CrossRefGoogle Scholar
  15. Krishnan, R., Riley, M., Lee, S., Lu, T.-M.: Formation of biaxially textured molybdenum thin films under the influence of recrystallization conditions. Thin Solid Films. 519, 5429–5432 (2011a)CrossRefGoogle Scholar
  16. Krishnan, R., Riley, M., Lee, S., Lu, T.-M.: Vertically aligned biaxially textured molybdenum thin films. J. Appl. Phys. 110, 064311-1-5 (2011b)CrossRefGoogle Scholar
  17. Laermans, C., Michiels, L., De Bock, A.: Reflection electron diffraction study of oblique textures in CdS thin films produced by electron bombardment evaporation. Thin Solid Films. 15, 317–324 (1973)CrossRefGoogle Scholar
  18. LaForge, J.M., Ingram, G.L., Taschuk, M.T., Brett, M.J.: Flux engineering to control in-plane crystal and morphological orientation. Cryst. Growth Des. 12, 3661–3667 (2012)CrossRefGoogle Scholar
  19. Li, H.-F., Kar, A.K., Parker, T., Wang, G.-C., Lu, T.-M.: The morphology and texture of Cu nanorod films grown by controlling the directional flux in physical vapor deposition. Nanotechnology. 19, 335708-1-8 (2008)CrossRefGoogle Scholar
  20. Malhotra, A.K., Yalisove, S.M., Bilello, J.C.: Origin of in-plane texture in sputtered Mo films. Mat. Res. Soc. Symp. Proc. 403, 33–38 (1996)Google Scholar
  21. Okamoto, K., Itoh, K.: Incidence angle dependences of columnar grain structure and texture in obliquely deposited iron films. Jpn. J. Appl. Phys. 44, 1382–1388 (2005)CrossRefGoogle Scholar
  22. Robbie, K., Sit, J.C., Brett, M.J.: Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B16, 1115–1122 (1998)CrossRefGoogle Scholar
  23. Schulz, U., Terry, S.G., Levi, C.G.: Microstructure and texture of EB-PVD TBCs grown under different rotation modes. Mat. Sci. Eng. A-Struct. 360, 319–329 (2003)CrossRefGoogle Scholar
  24. Shetty, A.R., Karimi, A., Cantoni, M.: Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films. Thin Solid Films. 519, 4262–4270 (2011)CrossRefGoogle Scholar
  25. Shim, Y., Amar, J.G.: Effects of shadowing in oblique-incidence metal (100) epitaxial growth. Phys. Rev. Lett. 98(4), 046103-1-4 (2007)CrossRefGoogle Scholar
  26. Tang, T., Gaire, C., Ye, D.-X., Karabacak, T., Lu, T.-M., Wang, G.-C.: AFM, SEM and in situ RHEED study of Cu texture evolution on amorphous carbon by oblique angle vapor deposition. Phys. Rev. B, 72, 035430-1-8 (2005)CrossRefGoogle Scholar
  27. van der Drift: Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Repts. 22, 267–288 (1967)Google Scholar
  28. van Dijken, S., Jorritsma, L.C., Poelsema, B.: Grazing-incidence metal deposition: Pattern formation and slope selection. Phys. Rev. B 61(20), 14047–14058 (2000)CrossRefGoogle Scholar
  29. Wang, P.I., Li, H.-F., Lu, T.-M.: Orientation modulated epitaxy of Cu nanorods on Si(100) substrate. IEEE Trans. Nanotechnol. 11(3), 542–545 (2012)MathSciNetGoogle Scholar
  30. Ye, D.-X., Karabacak, T., Lim, B.K., Wang, G.-C., Lu, T.-M.: Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology. 15, 817–821 (2004)CrossRefGoogle Scholar
  31. Ye, D.-X., Karabacak, T., Picu, R.C., Wang, G.-C., Lu, T.-M.: Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation. Nanotechnology. 16, 1717–1723 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dept of Phys., Applied Phys., and Astro.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.Dept. of Phys., Applied Phys., and AstroRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations