Transmission Electron Microscopy



This chapter will introduce the analyst to scanning/transmission electron microscopy (STEM/TEM). Basic concepts required for understanding scanning/transmission electron microscopy will be given. Simple introduction of TEM instrumentation, specimen preparation, and basic TEM operation will be discussed from the perspective of the instrument user. Diffraction will cover selected-area diffraction, nano-beam electron diffraction, and convergent-beam electron diffraction. Several typical TEM imaging techniques such as thickness-mass contrast imaging, diffraction contrast imaging, weak-beam dark-filed TEM imaging, high-resolution TEM imaging, energy-filtered TEM imaging will be presented. STEM imaging techniques will include high-angle annular dark-field imaging, STEM-bright-field imaging, and annular bright-field imaging. Spectroscopy (including energy-dispersive spectroscopy and electron energy-loss spectroscopy), energy-filtered TEM imaging and spectrum imaging will be described in a practical way. Aberration-corrected STEM/TEM including high-angle annular dark-field imaging and annular bright-field imaging, negative Cs TEM imaging, atomic column channeling contrast imaging, and chromatic aberration-corrected energy-filtered TEM imaging will also be presented in this chapter.


Electron Energy Loss Spectroscopy Transmission Electron Microscopy Specimen Objective Aperture HREM Image Atomic Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kisielowski C et al (2008) Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14:469–477. doi: 10.1017/S1431927608080902 CrossRefGoogle Scholar
  2. 2.
    Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Springer, ISBN 978-0387765020Google Scholar
  3. 3.
    Hirsch P, Howie A, Nicholson R, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Krieger, New York. ISBN 978-0882753768Google Scholar
  4. 4.
    Cockayne DJH (1981) Weak-beam electron microscopy. Ann Rev Mater Sci 11:75–95. doi: 10.1146/ CrossRefGoogle Scholar
  5. 5.
    Zuo JM, Mabon JC (2004) Web-based electron microscopy application software: web-EMAPS. Microsc Microanal 10:1000–1001. doi: 10.1017/S1431927604884319 CrossRefGoogle Scholar
  6. 6.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953. doi: 10.1103/PhysRevLett.53.1951 CrossRefGoogle Scholar
  7. 7.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605. doi: 10.1038/363603a0 CrossRefGoogle Scholar
  8. 8.
    Wen J et al (2010) The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Microsc Microanal 16:183. doi: 10.1017/S1431927610000085 CrossRefGoogle Scholar
  9. 9.
    Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003) Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300:1419–1421. doi: 10.1126/science.1083887 CrossRefGoogle Scholar
  10. 10.
    Huang WJ et al (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313. doi: 10.1038/nmat2132 CrossRefGoogle Scholar
  11. 11.
    Huang WJ, Zuo JM, Jiang B, Kwon KW, Shim M (2009) Sub-ångström-resolution diffractive imaging of single nanocrystals. Nat Phys 5:129–133. doi: 10.1038/nphys1161 CrossRefGoogle Scholar
  12. 12.
    Buxton BF, Eades JA, Steeds JW, Rackham GM (1976) The symmetry of electron diffraction zone axis patterns. Philos Trans R Soc Lond A281:171–194Google Scholar
  13. 13.
    Clément L, Pantel R, Kwakman LFT, Rouvière JL (2004) Strain measurements by convergent-beam electron diffraction: the importance of stress relaxation in lamella preparations. Appl Phys Lett 85:651–653. doi: 10.1063/1.1774275 CrossRefGoogle Scholar
  14. 14.
    Delille D, Pantel R, Van Cappellen E (2001) Crystal thickness and extinction distance determination using energy filtered CBED pattern intensity measurement and dynamical diffraction theory fitting. Ultramicroscopy 87:5–18CrossRefGoogle Scholar
  15. 15.
    Ishikawa R et al (2011) Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10:278–281. doi: 10.1038/nmat2957 CrossRefGoogle Scholar
  16. 16.
    Egerton RF (1989) Electron energy-loss spectroscopy in the electron microscope. Springer, New York. ISBN 978-1441995827Google Scholar
  17. 17.
    Hren JJ, Goldstein JI, Joy DC (1979) Introduction to analytical electron microscopy. Springer, New York. ISBN 978-0306402807Google Scholar
  18. 18.
    Sai ZR, Bradley JP, Erni R, Browning N (2005) High-resolution electron energy-loss spectroscopy (HREELS) using a monochromated TEM/STEM. Available at <>
  19. 19.
    Spence JCH (2009) High-resolution electron microscopy (Monographs on the physics and chemistry of materials), 3rd edn. Oxford University Press, Oxford. ISBN 978-0199552757Google Scholar
  20. 20.
    Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc (Tokyo) 47:395–405CrossRefGoogle Scholar
  21. 21.
    Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78:1–11. doi: 10.1016/S0304-3991(99)00013-3 CrossRefGoogle Scholar
  22. 22.
    Jia C-L, Lentzen M, Urban K (2004) High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10:174–184. doi: 10.1017/S1431927604040425 CrossRefGoogle Scholar
  23. 23.
    Urban KW et al (2009) Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos Trans R Soc A 367:3735–3753. doi: 10.1098/rsta.2009.0134 CrossRefGoogle Scholar
  24. 24.
    Jonge N, de Lupini A, Benthem K, van Borisevich A, Pennycook S (2006) Depth-related contrast in aberration-corrected confocal STEM. Microsc Microanal 12:1574–1575. doi: 10.1017/S1431927606067900 CrossRefGoogle Scholar
  25. 25.
    Krivanek OL et al (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574. doi: 10.1038/nature08879 CrossRefGoogle Scholar
  26. 26.
    Kimoto K et al (2007) Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702–704. doi: 10.1038/nature06352 CrossRefGoogle Scholar
  27. 27.
    Van Dyck D, Op de Beeck M (1996) A simple intuitive theory for electron diffraction. Ultramicroscopy 64:99–107. doi: 10.1016/0304-3991(96)00008-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electron Microscopy Center, Argonne National LaboratoryArgonneUSA

Personalised recommendations