Skip to main content

Transmission Electron Microscopy

  • Chapter
  • First Online:

Abstract

This chapter will introduce the analyst to scanning/transmission electron microscopy (STEM/TEM). Basic concepts required for understanding scanning/transmission electron microscopy will be given. Simple introduction of TEM instrumentation, specimen preparation, and basic TEM operation will be discussed from the perspective of the instrument user. Diffraction will cover selected-area diffraction, nano-beam electron diffraction, and convergent-beam electron diffraction. Several typical TEM imaging techniques such as thickness-mass contrast imaging, diffraction contrast imaging, weak-beam dark-filed TEM imaging, high-resolution TEM imaging, energy-filtered TEM imaging will be presented. STEM imaging techniques will include high-angle annular dark-field imaging, STEM-bright-field imaging, and annular bright-field imaging. Spectroscopy (including energy-dispersive spectroscopy and electron energy-loss spectroscopy), energy-filtered TEM imaging and spectrum imaging will be described in a practical way. Aberration-corrected STEM/TEM including high-angle annular dark-field imaging and annular bright-field imaging, negative Cs TEM imaging, atomic column channeling contrast imaging, and chromatic aberration-corrected energy-filtered TEM imaging will also be presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kisielowski C et al (2008) Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14:469–477. doi:10.1017/S1431927608080902

    Article  Google Scholar 

  2. Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Springer, ISBN 978-0387765020

    Google Scholar 

  3. Hirsch P, Howie A, Nicholson R, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Krieger, New York. ISBN 978-0882753768

    Google Scholar 

  4. Cockayne DJH (1981) Weak-beam electron microscopy. Ann Rev Mater Sci 11:75–95. doi:10.1146/annurev.ms.11.080181.000451

    Article  Google Scholar 

  5. Zuo JM, Mabon JC (2004) Web-based electron microscopy application software: web-EMAPS. Microsc Microanal 10:1000–1001. doi:10.1017/S1431927604884319

    Article  Google Scholar 

  6. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953. doi:10.1103/PhysRevLett.53.1951

    Article  Google Scholar 

  7. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605. doi:10.1038/363603a0

    Article  Google Scholar 

  8. Wen J et al (2010) The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Microsc Microanal 16:183. doi:10.1017/S1431927610000085

    Article  Google Scholar 

  9. Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003) Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300:1419–1421. doi:10.1126/science.1083887

    Article  Google Scholar 

  10. Huang WJ et al (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313. doi:10.1038/nmat2132

    Article  Google Scholar 

  11. Huang WJ, Zuo JM, Jiang B, Kwon KW, Shim M (2009) Sub-ångström-resolution diffractive imaging of single nanocrystals. Nat Phys 5:129–133. doi:10.1038/nphys1161

    Article  Google Scholar 

  12. Buxton BF, Eades JA, Steeds JW, Rackham GM (1976) The symmetry of electron diffraction zone axis patterns. Philos Trans R Soc Lond A281:171–194

    Google Scholar 

  13. Clément L, Pantel R, Kwakman LFT, Rouvière JL (2004) Strain measurements by convergent-beam electron diffraction: the importance of stress relaxation in lamella preparations. Appl Phys Lett 85:651–653. doi:10.1063/1.1774275

    Article  Google Scholar 

  14. Delille D, Pantel R, Van Cappellen E (2001) Crystal thickness and extinction distance determination using energy filtered CBED pattern intensity measurement and dynamical diffraction theory fitting. Ultramicroscopy 87:5–18

    Article  Google Scholar 

  15. Ishikawa R et al (2011) Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10:278–281. doi:10.1038/nmat2957

    Article  Google Scholar 

  16. Egerton RF (1989) Electron energy-loss spectroscopy in the electron microscope. Springer, New York. ISBN 978-1441995827

    Google Scholar 

  17. Hren JJ, Goldstein JI, Joy DC (1979) Introduction to analytical electron microscopy. Springer, New York. ISBN 978-0306402807

    Google Scholar 

  18. Sai ZR, Bradley JP, Erni R, Browning N (2005) High-resolution electron energy-loss spectroscopy (HREELS) using a monochromated TEM/STEM. Available at <http://ntrs.nasa.gov/search.jsp?R=20050167802>

  19. Spence JCH (2009) High-resolution electron microscopy (Monographs on the physics and chemistry of materials), 3rd edn. Oxford University Press, Oxford. ISBN 978-0199552757

    Google Scholar 

  20. Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc (Tokyo) 47:395–405

    Article  Google Scholar 

  21. Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78:1–11. doi:10.1016/S0304-3991(99)00013-3

    Article  Google Scholar 

  22. Jia C-L, Lentzen M, Urban K (2004) High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10:174–184. doi:10.1017/S1431927604040425

    Article  Google Scholar 

  23. Urban KW et al (2009) Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos Trans R Soc A 367:3735–3753. doi:10.1098/rsta.2009.0134

    Article  Google Scholar 

  24. Jonge N, de Lupini A, Benthem K, van Borisevich A, Pennycook S (2006) Depth-related contrast in aberration-corrected confocal STEM. Microsc Microanal 12:1574–1575. doi:10.1017/S1431927606067900

    Article  Google Scholar 

  25. Krivanek OL et al (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574. doi:10.1038/nature08879

    Article  Google Scholar 

  26. Kimoto K et al (2007) Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702–704. doi:10.1038/nature06352

    Article  Google Scholar 

  27. Van Dyck D, Op de Beeck M (1996) A simple intuitive theory for electron diffraction. Ultramicroscopy 64:99–107. doi:10.1016/0304-3991(96)00008-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Guo Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wen, J.G. (2014). Transmission Electron Microscopy. In: Sardela, M. (eds) Practical Materials Characterization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9281-8_5

Download citation

Publish with us

Policies and ethics