Skip to main content

Challenges in Future-Generation Interconnects: Microstructure Again

  • Chapter
  • First Online:
  • 1656 Accesses

Abstract

Understanding multifaceted microstructural evolution mechanisms is a key enabling foundation that will enable computational modeling and prediction of electronic system lifetimes before anything is built.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Kariya, C. Gagg, and W.J. Plumbridge, Tin pest in lead-free solders, Soldering and Surface Mount Technology, V. 13(1), pp. 39–40, 2000.

    Google Scholar 

  2. M. Kuramoto, S. Ogawa, M. Niwa, K.-S. Kim, and K. Suganuma, Die bonding for a nitride light-emitting diode by low-temperature sintering of micrometer size silver particles, IEEE Trans. Component and Packaging Technology vol. 33, no. 4, pp. 801–808, Dec. 2010.

    Google Scholar 

  3. J. G. Bai, Z. Z. Zhang, J. N. Calata, G.-Q. Lu, Low-Temperature Sintered Nanoscale Silver as a Novel Semiconductor Device- Metallized Substrate Interconnect Material, IEEE Transaction on Components and Packaging Technologies, Vol. 29, No. 3, pp.589-593, 2006.

    Google Scholar 

  4. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light emitting diodes, Applied Physics Letters, V 64(13), pp. 1687–1689, 1994.

    Google Scholar 

  5. M.-H. Chang, D. Dasa, P.V. Vardea, M. Pecht, Light emitting diodes reliability review, V. 52, Issue 5, pp. 762–782 May 2012.

    Google Scholar 

  6. Q. Cheng, Thermal Management of High-power White LED Package, Electronics Process Technology, Vol. 28, No. 6, pp. 311–315, 2007.

    Google Scholar 

  7. E. F. Schubert, Light-Emitting Diodes/Edition 2, Cambridge University Press, 2006.

    Google Scholar 

  8. T. Wang, Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection, Electronic Materials, V. 36, Vo. 10, pp. 1333–1340, 2007.

    Google Scholar 

  9. K. Zhang, Y. Chai, M.M.F. Yuen, D.G.W. Xiao, P.C.H. Chan, Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology, V.19, 215706, pp.1-8, 2008.

    Google Scholar 

  10. B. A. Cola, Carbon Nanotubes as High Performance Thermal Interface Materials, Electronics Cooling, April 30th, 2010.

    Google Scholar 

  11. B. Banijamali, S. Ramalingam, K. Nagarajan, R. Chaware, Advanced reliability study of TSV interposers and interconnects for the 28 nm technology FPGA,” IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 285–290, 2011.

    Google Scholar 

  12. V. Sukumaran, T. Bandyopadhyay, V. Sundaram, R. Tummala, Low-Cost Thin Glass Interposers as a Superior Alternative to Silicon and Organic Interposers for Packaging of 3-D ICs, IEEE Transactions on Components, Packaging and Manufacturing Technology, V. 2, Issue: 9, pp. 1426–1433, 2012.

    Google Scholar 

  13. S. Wiese, M. Roellig, M. Mueller, K.-J. Wolter, The effect of down scaling the dimensions of solder interconnects on their creep properties, in International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro- Systems, EuroSime 2007, pp. 1 –8, 2007.

    Google Scholar 

  14. C. Andersson, P.-E. Tegehall, D. R. Andersson, G. Wetter, J. Liu, Thermal cycling aging effect on the shear strength, microstructure, intermetallic compounds (IMC) and crack initiation and propagation of reflow soldered Sn-3.8Ag-0.7Cu and wave soldered Sn-3.5Ag ceramic chip components, IEEE Transactions on Components and Packaging Technologies, V. 31(2), pp. 331 –344, Jun. 2008.

    Google Scholar 

  15. O. Fouassier, J.-M. Heintz, J. Chazelas, P.-M. Geffroy, and J.-F. Silvain, Microstructural evolution and mechanical properties of SnAgCu alloys, Journal of Applied Physics, V. 100(4), 043519, Aug. 2006.

    Google Scholar 

  16. W. J. Plumbridge, C. R. Gagg, and S. Peters, The creep of lead-free solders at elevated temperatures, Journal of Electronic Materials, V. 30(9), pp. 1178–1183, 2001.

    Google Scholar 

  17. R. S. Sidhu and N. Chawla, Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: Part I. Microstructure characterization of bulk solder and solder/copper joints, Metall and Mat Trans A, V.39(2), pp. 340–348, 2008.

    Google Scholar 

  18. I. Dutta, E. Pan, R.A. Marks, S.G. Jadhav, Effect of thermo-mechanically induced microstructural coarsening on the evolution of creep response of SnAg-based microelectronic solders, Materials Science and Engineering A, V.410–411, pp.48–52, 2005.

    Google Scholar 

  19. G. Cuddalorepatta, A. Dasgupta, Multi-scale modeling of the viscoplastic response of As-fabricated microscale Pb-free Sn3.0Ag0.5Cu solder interconnects, Acta Materialia, V. 58 (18), pp. 5989–6001, 2010.

    Google Scholar 

  20. S. Mukherjee, A. Dasgupta, Multiscale modeling of anisotropic creep response of heterogeneous single crystal SnAgCu solder, Proceedings of International Conference on Electronics Packaging, ICEP, Osaka, Japan, April. 2013.

    Google Scholar 

  21. J. Rosler, Particle strengthened alloys for high temperature applications: strengthening mechanisms and fundamentals of design, Int. Jrnl. of Materials and Product Technology, vol. 18, pp. 70–90, 2003.

    Google Scholar 

  22. S. Rangaraj and K. Kokini, Time-dependent behavior of ceramic (zirconia)-metal (NiCoCrAlY) particulate composites, Mechanics of Time-Dependent Materials, vol. 6, pp. 171–191, 2002.

    Google Scholar 

  23. P. Darbandi, T.R. Bieler, F. Pourboghrat, T-K. Lee, The Effect of Cooling Rate on the Grain Orientation and Misorientation Microstructure of SAC105 Solder Joints Before and After Impact Drop Tests, Journal of Electronic Materials, V. 43 (7), pp. 2521–2529, 2014.

    Google Scholar 

  24. F. Roters, Y. Wang, J.-C. Kuo, D. Raabe, Dierk-Raabe-overview-micromechanics-2012, Max Planck Institute for Iron Research GmbH, Oct. 2012.

    Google Scholar 

  25. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjantoa, T. R. Bieler, and D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materiala, vol. 58, issue 4, Feb. 2010, pp. 1152–1211.

    Google Scholar 

  26. A. R. Zamiri, F. Pourboghrat, and T. R. Bieler, “A quantitative study of the effect of surface texture on plasticity induced surface roughness and dislocation density of crystalline materials,” Journal of Applied Physics, vol. 104, no. 8, Oct. 2008.

    Google Scholar 

  27. A. R. Zamiri and F. Pourboghrat, “A novel yield function for single crystals based on combined constraints optimization,” International Journal of Plasticity, vol. 26, no. 5, pp. 731–746, May 2010.

    Google Scholar 

  28. A. Zamiri, T. R. Bieler, and F. Pourboghrat, “Anisotropic crystal plasticity finite element modeling of the effect of crystal orientation and solder joint geometry on deformation after temperature change,” Journal of Electronic Materials, vol. 38, no. 2, pp. 231–240, Nov. 2008.

    Google Scholar 

  29. A. Zamiri, F. Pourboghrat, and F. Barlat, “An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming,” International Journal of Plasticity, vol. 23, no. 7, pp. 1126–1147, Jul. 2007.

    Google Scholar 

  30. Y. Guan, F. Pourboghrat, and F. Barlat, “Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions,” International Journal of Plasticity, vol. 22, no. 12, pp. 2366–2393, Dec. 2006.

    Google Scholar 

  31. P. Onck and E. van der Giessen, “Microstructurally-based modelling of intergranular creep fracture using grain elements,” Mechanics of Materials, vol. 26, no. 2, pp. 109–126, Sep. 1997.

    Google Scholar 

  32. S. Park, R. Dhakal, and J. Gao, “Three-dimensional finite element analysis of multiple-grained lead-free solder interconnects,” Journal of Electronic Materials, vol. 37, no. 8, pp. 1139–1147, Aug. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, TK., Bieler, T.R., Kim, CU., Ma, H. (2015). Challenges in Future-Generation Interconnects: Microstructure Again. In: Fundamentals of Lead-Free Solder Interconnect Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9266-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9266-5_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-9265-8

  • Online ISBN: 978-1-4614-9266-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics