Skip to main content

Packaging Process of High Power Semiconductor Lasers

  • Chapter
  • First Online:
Packaging of High Power Semiconductor Lasers
  • 2450 Accesses

Abstract

Despite the many advances in manufacturing of high power semiconductor lasers, the basic packaging process has not been changed significantly. This chapter reviews the steps used to package and assemble high power semiconductor laser with open packages and fiber-coupled modules. The fabrication procedure of open packages contains a sequence of processes, which involve incoming materials inspection, raw materials cleaning, metallization, solder deposition, die bonding, wire bonding, assembling, screening, before burn-in (BBI) test, burn in (BI), after burn-in (ABI) test, and final inspection. The details are presented in Sects. 7.1–7.10. Fiber-coupled modules typically use an open package, optics, and a fiber to couple the light into the fiber. The packaging process for fiber-coupled module is introduced in Sect. 7.11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Wang, D. Hou, X.S. Liu, Packaging Process of High Power Semiconductor Lasers. (Internal Talk from Focuslight Technologies Co., Ltd., 2012), pp. 11–35

    Google Scholar 

  2. http://www.perkinelmer.com/CMSResources/Images/44-74542GDE_DSCBeginnersGuide.pdf

  3. http://www.axic.com/images/thin-film-notes/AppNote2-CompositionThicknessMetalFilms.pdf

  4. http://www.oxford-instruments.com/products/coating-thickness-measurement-tools/coating-thickness-analyser-x-strata

  5. http://www.upcorp.com/monthlyspecial-bt2020.html

  6. R.H. Todd, D.K. Allen, L. Alting, Manufacturing Processes Reference Guide (Industrial Press, Inc., New York, 1994)

    Google Scholar 

  7. http://nzic.org.nz/ChemProcesses/metals/

  8. M.E.V. Shun’ko, V.S. Belkin, Cleaning properties of atomic oxygen excited to metastable state 2s22p4(1S0). J. Appl. Phys. 102, 083304 (1–14) (2007)

    Google Scholar 

  9. S. Deiries, A. Silber, O. Iwert, E. Hummel, J.L. Lizon, Plasma Cleaning: A New Method of Ultra-Cleaning Detector Cryostats (European Southern Observatory, Garching, Germany, 2006)

    Book  Google Scholar 

  10. http://plasmatreatment.co.uk/wp-content/uploads/2013/09/21.png

  11. http://sindhu.ece.iisc.ernet.in/nanofab/twikii/pub/Main/E-beamEvaporation/E-beam%20manual1.pdf

  12. http://www.jeol.co.jp/en/science/eb.html

  13. K.S.S. Harsha, Principles of Physical Vapor Deposition of Thin Films (Elsevier, Great Britain, 2006), p. 400

    Google Scholar 

  14. http://www.oxford-vacuum.com/background/thin_film/evaporation.htm

  15. http://sindhu.ece.iisc.ernet.in/nanofab/twiki/pub/Main/ThermalEvaporation/thermal_evaporation_procedure.pdf

  16. https://biblio.ugent.be/input/download?func=downloadFile&recordOId=1095343&fileOId=1095356

  17. http://www.directvacuum.com/sputter.asp

  18. http://repository.tudelft.nl/view/ir/uuid:0058f840-4b34-41ff-bc73-a086bc797ce4/

  19. K. Boucke, Packaging of Diode Laser Bars (Springer, Berlin, 2007)

    Book  Google Scholar 

  20. http://www.micralyne.com/newslyne/ausnpaper.pdf

  21. F. Bachmann, High-Power Diode Lasers Technology and Applications (Aachen, Germany, 2006)

    Google Scholar 

  22. X.S. Liu, R.W. Davis, L.C. Hughes, M.H. Rasmussen, R. Bhat, C.E. Zah, J. Stradling, A study on the reliability of indium solder die bonding of high power semiconductor lasers. J. Appl. Phys. 100(1), 013104(1–11) (2006)

    Google Scholar 

  23. http://extra.ivf.se/ngl/documents/ChapterA/ChapterA1.pdf

  24. http://www.microbonds.com/xwiretech/xwire_bkg.htm

  25. http://extra.ivf.se/ngl/documents/ChapterA/ChapterA2.pdf

  26. http://www.idt.com/document/power-systems-design-estimating-bond-wire-current-carrying-capacity

  27. X.S. Liu, W. Zhao, Technology Trend and Challenges in High Power Semiconductor Laser Packaging. IEEE, 2009 Electronic Components and Technology Conference (2009), pp. 2106–2113

    Google Scholar 

  28. Y. Wang, L. Qin, Y. Zhang, Z.H. Tian, Y. Yang, Z.J. Li, C. Wang, D. Yao, H.H. Yin, Y. Liu, L.J. Wang, Packaging-induced strain measurement based on the degree of polarization in GaAsP-GaInP high-power diode laser bars. IEEE Photon. Technol. Lett. 21(14), 963–965 (2009)

    Article  Google Scholar 

  29. G.Q. Lu, J.N. Calata, Z.Y. Zhang, J.G. Bai, A Lead-Free, Low-Temperature Sintering Die-Attachment Technique for High Performance and High-Temperature Packaging. Proceeding of 6th IEEE CPMT Conference of High Density Microsystem Design and Packaging and Component Failure Analysis (2004), pp. 42–46

    Google Scholar 

  30. X.S. Liu, L.C. Hughes, M.H. Rasmussen, M.H. Hu, V.A Bhagavatula, R.W. Davis, S. Coleman, R. Bhat, C.E. Zah, Packaging and Performance of 980 nm Broad Area Semiconductor Lasers. IEEE 2005 6th International Conference on Electronic Packaging Technology (2005), pp. 67–73

    Google Scholar 

  31. http://www.finetech.de

  32. http://www.atv-tech.de/en/index.html

  33. S.A. Merritt, F. Seiferth, V. Vusirikala, M. Dagenais, Y.J. Chen, D.R. Stone, A Rapid Flip Chip Die Bonding Method for Semiconductor Laser Diode Arrays. IEEE 1997 Electronic Components and Technology Conference (1997), pp. 775–779

    Google Scholar 

  34. P. Zhalefar, A. Dadoo, M. Nazerian, A. Parniabaran, A.G. Mahani, M. Akhlaghifar, P. Abbasi, M.S. Zabhi, J. Sabbaghzadeh, Study on effects of solder fluxes on catastrophic mirror damages during laser diode packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 3(1), 46–51 (2013)

    Article  Google Scholar 

  35. M. Hempel, M. Ziegler, S. Schwirzke-Schaaf, J.W. Tomm, D. Jankowski, D. Schröder, Spectroscopic analysis of packaging concepts for high-power diode laser bars. Appl. Phys. A 107(2), 371–377 (2012)

    Article  Google Scholar 

  36. Department of Defense, MIL-STD-883E, Test method standard, micro-circuits, Method 1014.9, March 14, 1995

    Google Scholar 

  37. http://assets.newport.com/webDocuments-EN/images/WP_Reduce_Test_Laser_Diode_IX.PDF

  38. L.A. Johnson, Laser diode burn-in and reliability testing. IEEE Comm. Mag. 44(2), 4–7 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, X., Zhao, W., Xiong, L., Liu, H. (2015). Packaging Process of High Power Semiconductor Lasers. In: Packaging of High Power Semiconductor Lasers. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9263-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9263-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9262-7

  • Online ISBN: 978-1-4614-9263-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics