Skip to main content

Materials in High Power Semiconductor Laser Packaging

  • Chapter
  • First Online:
Packaging of High Power Semiconductor Lasers

Abstract

The performance of semiconductor lasers is greatly affected by the properties of packaging materials, which mainly consist of diverse bonding solders, mounting substrates [1–4]. The selection of packaging materials is multidisciplinary and involves achieving a balance among device performance, reliability, manufacturability, and cost-effectiveness. In this chapter, the properties of solder materials, as well as mounting substrates employed in the packaging of high power semiconductor lasers are presented and the effects of material properties on the performance of semiconductor lasers are analyzed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Zweben, New, low-CTE, ultrahigh-thermal-conductivity materials for lidar laser diode packaging. Proc. SPIE 58870D(1–10) (2005)

    Google Scholar 

  2. V. Von, Thermal and Mechanical Optimisation Diode Laser Bar Packaging, PHD paper, Herstellung und Verlag: Books on Demand GmbH, Norderstedt (2007)

    Google Scholar 

  3. www.torreyhillstech.com Understanding of Laser, Laser diodes, Laser diode packaging and its relationship to Tungsten Copper; 6370 LUSK BLVD, SUITE F-11

  4. A.C. Pliska, J. Mottin, N. Matuschek, C. Bosshard, Bonding semiconductor laser chips: substrate material figure of merit and die attach layer influence, Belgirate, Italy, (2005), pp. 28–30

    Google Scholar 

  5. F. Bachmann, P. Loosen, R. Poprawe, High Power Diode Lasers Technology and Applications (Springer Science + Business Media, LLC, New York, 2007)

    Google Scholar 

  6. D. Lorenzen, M. Schrer, J. Meusel, P. Hennig, H. Kig, M. Phillippens, J. Sebastian, R. Hülsewede, Comparative performance studies of indium and gold-tin packaged diode laser bars. Proc. SPIE 6104, 610404 (2006)

    Article  Google Scholar 

  7. X.S. Liu, R.W. Davis, L.C. Hughes, M.H. Rasmussen, R. Bhat, C.E. Zah, A study on the reliability of indium solder die bonding of high power semiconductor lasers. J. Appl. Phys. 100, 013104(1–11) (2006)

    Google Scholar 

  8. J.L. Hostetler, C.L. Jiang, V. Negoita, T. Vethake, R. Roff, A. Shroff, C. Miester, U. Bonna, G. Charache, H. Schlüter, F. Dorsch, Thermal and strain characteristics of high-power 940 nm laser arrays mounted with AuSn and In solders. Proc. SPIE 6456(645602) 645602(1–12) (2007)

    Google Scholar 

  9. M. Wakaki, K. Kudo, T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  10. G. Humpston, D.M. Jacobson, Advanced materials and processes. Indium Solders 163(4), 45–47 (2005)

    Google Scholar 

  11. www.indium.com

  12. http://www.coininginc.com/files/admin/english_gold_tin_paper.pdf

  13. H. Okamoto, T.B. Massalski, The Au-Sn(Gold-Tin) System in Phase Diagram of Binary Gold Alloys (ASM International, Metals Park, OH, 1987), pp. 278–289

    Google Scholar 

  14. Q. Wang, S.-H. Choa, W. Kim, J. Hwang, S.K. Ham, C. Moon, Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging. J. Electron. Mater. 35(3), 425–432 (2006)

    Article  Google Scholar 

  15. H. Okamoto, T.B. Massalski, Binary Alloy Phase Diagrams (ASM International, Metals Park, OH, 1990)

    Google Scholar 

  16. S. Zama, D.F. Baldwin, T. Hikami, H. Murata, Flip Chip Interconnect Systems Using Wire Stud Bumps and Lead Free Solder. Proceedings of 50th Electronic Components and Technology Conference, Las Vegas, May 2000

    Google Scholar 

  17. H. Oppermann, The Role of Au/Sn Solder in Packaging Materials for Information Technology (Springer, London, 2005), pp. 377–390

    Book  Google Scholar 

  18. A. Debski, W. Gasior, Z. Moser, R. Major, Enthalpy of formation of intermetallic phases from the Au–Sn system. J. Alloy Compd. 491(1–2), 173–177 (2010)

    Article  Google Scholar 

  19. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: review. Microelectron. Reliab. 52(7), 1306–1322 (2012)

    Article  Google Scholar 

  20. X.S. Liu, K. Song, R.W. Davis, M.H. Hu, C.E. Zah, Design and Implementation of Metallization Structures for Epi-Down Bonded High Power Semiconductor Lasers. 2004 Electronic Components and Technology Conference, vol. 1 (2004), pp. 798–806

    Google Scholar 

  21. X.S. Liu, K.C. Song, R.W. Davis, L.C. Hughes, M.H. Hu, C.E. Zah, A metallization scheme for junction-down bonding of high-power semiconductor lasers. IEEE Trans. Adv. Pack. 29(3), 533–541 (2006)

    Article  Google Scholar 

  22. http://www.indium.com/products/alloy_sorted_by_temperature.pdf

  23. D.P. Seraphim, R. Lasky, C.Y. Li, Principles of Electronic Packaging (McGraw-Hill, New York, 1989)

    Google Scholar 

  24. J. Glazer, Metallurgy of low temperature Pb-free solders for electronic assembly. Int. Mater. Rev. 40(2), 65–93 (1995)

    Article  Google Scholar 

  25. Z. Mei, J.W. Morris Jr., Superplastic creep of low melting point solder joints. J. Electron. Mater. 21(4), 401–407 (1992)

    Article  Google Scholar 

  26. J.L. Freer, J.W. Morris Jr., Microstructure and creep of indium/tin on Cu and Ni substrates. J. Electron. Mater. 21(6), 647–652 (1992)

    Article  Google Scholar 

  27. J. Seyyedi, Thermal fatigue behavior of low melting point solder joints. Soldering Surf. Mount Technol. 5(1), 26–32 (1993)

    Article  Google Scholar 

  28. http://tersted.home.xs4all.nl/PDF_files/Heraeus/SMI98NoPb.pdf

  29. G. Humpston, D.M. Jacobson, Principles of Soldering (ASM International, Metals Park, OH, 2004)

    Google Scholar 

  30. J.W. Wang, D. Hou, X.S. Liu, Introduction of packaging materials for high power semiconductor lasers. Internal Talk from Focuslight Technologies Co., Ltd. (2011), pp. 18–27

    Google Scholar 

  31. I. Karakaya, W.T. Thompson, The Ag-Sn (Silver-Tin) system. Bull. Alloy Phase Diagrams 8(4), 340–347 (1987)

    Article  Google Scholar 

  32. N. Saunders, A.P. Miodownik, The Cu-Sn (Copper-Tin) system. Bull. Alloy Phase Diagrams 11(3), 278–287 (1990)

    Article  Google Scholar 

  33. C.M. Miller, I.E. Anderson, J.F. Smith, A viable tin-lead solder substitute Sn-Ag-Cu. J. Electron. Mater. 23, 595–601 (1994)

    Article  Google Scholar 

  34. M.E. Loomans, M.E. Fine, Tin-silver-copper eutectic temperature and composition. Metall. Mater. Trans. 31, 1155–1162 (2000)

    Article  Google Scholar 

  35. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. J. Electron. Mater. 29, 1122–1136 (2000)

    Article  Google Scholar 

  36. http://cmst.be/projects/imecat/documents/08_2004_Eurosime_Vandevelde_paper.pdf

  37. J. Bartelo, S.R. Cain, D. Caletka, K. Darbha, T. Gosselin, D.W. Henderson, D. King, K. Knadle, A. Sarkhel, G. Thiel, C. Woychik, Thermomechanical Fatigue Behavior of Selected Lead Free Solders. 2nd Electronics Assembly Process Conference (2001)

    Google Scholar 

  38. P. Chalco, E. Blackshear, Reliability Issues of BGA Packages Attached With Lead-Free Solder. Proceedings InterPack01, The Pacific Rim/ASME International Electronic Packaging Technical Conference (2001), pp. 8–13

    Google Scholar 

  39. D. Bhate, D. Chan, G. Subbarayan, T.C. Chiu, V. Gupta, D.R. Edwards, Constitutive behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu alloys at creep and low strain rate regimes. IEEE Trans. Compon. Pack. Technol. 31(3), 622–633 (2008)

    Article  Google Scholar 

  40. http://www.et-trends.com/files/Heat_Sinks_Question.pdf

  41. X.C. Tong, Advanced Materials for Thermal Management of Electronic Packaging (Springer Science + Business Media, LLC, New York, 2011)

    Book  Google Scholar 

  42. G.P. Akishin, S.K. Turnaev, V.Y. Vaispapir, M.A. Gorbunova, Y.N. Makurin, V.S. Kiiko, A.L. Ivanovskii, Thermal conductivity of beryllium oxide ceramic. Refract. Ind. Ceram. 50(6), 465–468 (2009)

    Article  Google Scholar 

  43. J.W. Wang, Z.B. Yuan, L.J. Kang, K. Yang, Y.X. Zhang, X.S. Liu, Study of the Mechanism of “Smile” in High Power Diode Laser Arrays and Strategies in Improving Near-field Linearity. 2009 Electronic Components and Technology Conference (2009), pp. 837–842

    Google Scholar 

  44. G.S. Jiang, L.Y. Diao, K. Kuang, Advanced Thermal Management Materials (Springer, Berlin, 2013)

    Book  Google Scholar 

  45. R. Feeler, J. Junghans, G. Kemner, E. Stephens, Next-generation micro-channel coolers. Proc. SPIE 6876, 687608(1–8) (2008)

    Google Scholar 

  46. C. Zweben, New, low-CTE, ultrahigh-thermal-conductivity materials for lidar laser diode packaging. Proc. SPIE 58870D (1–10) (2005)

    Google Scholar 

  47. http://132.228.182.183/products/ceo_micro_cooled_diodes/assets/Ceramic_coolers_paper.pdf

  48. K.E. Goodson, K. Kurabayashi, R. Fabian, W. Pease, Improved heat sinking for laser-diode arrays using micro-channels in CVD diamond. IEEE Trans. Compon. Pack. B 20(1), 104–109 (1997)

    Article  Google Scholar 

  49. E.C. Yu, A.J. Przekwas, Thermomechanical Design of a Microchannel Cooled Semiconductor Laser Diode Array Package. Part of the SPIE Conference on Physics and Simulation of Optoelectronic Devices VII, vol. 3625 (1999), pp. 535–542

    Google Scholar 

  50. C. Zweben, New, low-CTE, ultra high-thermal-conductivity materials for lidar laser diode packaging. Proc. SPIE 58870D(1–10) (2005)

    Google Scholar 

  51. M. Leers, C. Scholz, K. Boucke, M. Oudart, Next Generation Heat Sinks for High-Power Diode Laser Bars. 23rd IEEE Semi-Thermal Symposium (2007), pp. 105–111

    Google Scholar 

  52. http://www.hfmorke.cn/alncer.html

  53. K. Watari, K. Ishizaki, F. Tsuchiya, Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics. J. Materi. Sci. 28(14), 3709–3714 (1993)

    Article  Google Scholar 

  54. H. Nasery, M. Pugh, M. Medraj, Novel fabrication process of AlN ceramic matrix composites at low temperatures. Sci. Eng. Compos. Mater. 18(3), 117–125 (2011)

    Article  Google Scholar 

  55. A. Hafidi, M. Billy, J.P. Lecompte, Influence of microstructural parameters on thermal-diffusivity of aluminum nitride-based ceramics. J. Mater. Sci. 27(12), 3405–3408 (1992)

    Article  Google Scholar 

  56. D. de Faoite, D.J. Browne, F.R. Chang-Díaz, K.T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J. Mater. Sci 47(10), 4211–4235 (2012)

    Article  Google Scholar 

  57. J.H. Harris, R.A. Youngman, R.G. Teller, On the nature of the oxygen-related defect in aluminum nitride. J. Mater. Res. 5(8), 1763–1773 (1990)

    Article  Google Scholar 

  58. H. Buhr, G. Muller, H. Wiggers, F. Aldinger, P. Foley, A. Roosen, Phase composition, oxygen content, and thermal conductivity of A1N(Y203) ceramics. J. Am. Ceram. Soc. 74(4), 718–723 (1991)

    Article  Google Scholar 

  59. T.B. Jackson, A.V. Virkar, K.L. More, R.B. Dinwiddie, R.A. Cutler, High thermal conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc. 80(6), 1421–1435 (1997)

    Article  Google Scholar 

  60. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34(2), 321–335 (1973)

    Article  Google Scholar 

  61. G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas, Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 246(3–4), 287–298 (2002)

    Article  Google Scholar 

  62. W. Koji, High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 109(1), S7–S16 (2001)

    Google Scholar 

  63. J.P. Sachet, J.Y. Laval, F. Lepoutre, A.C. Boccara, Thermal behaviour of grain boundaries in aluminium nitride ceramics. J. Phys. Colloq. 51(C1), 617–622 (1999)

    Google Scholar 

  64. K.J. Lodge, J.A. Sparrow, E.D. Perry, E.A. Logan, M.T. Goosey, D.J. Pedder, C. Montgomery, Prototype packages in aluminum nitride for high performance electronic systems. IEEE Trans. Compon. Hybr. 13(4), 633–638 (1990)

    Article  Google Scholar 

  65. L. La Spina, E. Iborra, H. Schellevis, M. Clement, J. Olivares, L.K. Nanver, Aluminum nitride for heat spreading in RF IC’s. Solid-State Electron. 52(9), 1359–1363 (2008)

    Article  Google Scholar 

  66. http://www.ntktech.com/AlN/ALN%20for%20web.pdf

  67. S.C. Carniglia, R.E. Johnson, A.C. Hott, G.G. Bentle, Hot pressing for nuclear applications of BeO; process, product, and properties. J. Nucl. Mater. 14, 378–394 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, X., Zhao, W., Xiong, L., Liu, H. (2015). Materials in High Power Semiconductor Laser Packaging. In: Packaging of High Power Semiconductor Lasers. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9263-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9263-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9262-7

  • Online ISBN: 978-1-4614-9263-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics