Skip to main content

Aspartic Proteolytic Inhibitors Induce Cellular and Biochemical Alterations in Fungal Cells

  • Chapter
  • First Online:
Book cover Proteases in Health and Disease

Abstract

Although fungal infections contribute substantially to human morbidity and mortality, the impact of these diseases on human health is not widely appreciated. Diagnosis and treatment of fungal infections remain a challenge in medicine despite recent major advances. The search for novel pharmacological compounds with antifungal action is a real requirement. Taking it into consideration, research groups have investigated the effects of aspartic peptidase inhibitors (PIs) on the development of human fungal pathogens such as Candida spp, mainly Candida albicans and Candida parapsilosis, Cryptococcus neoformans, Pneumocystis jiroveci and Fonsecaea pedrosoi, based on the following premises: (1) this class of hydrolytic enzymes performs multiple relevant roles in pathophysiological events associated to the fungal infections and (2) the introduction of human immunodeficiency virus (HIV) PIs in the clinical arena drastically reduced the opportunistic infections caused by fungi in this population. As expected, the blockage of one of these physiological/pathological processes should help in containing the fungal infection. Corroborating this hypothesis, both in vitro and in vivo studies have reported that classical aspartic PIs (e.g., pepstatin A) as well as HIV PIs (e.g., nelfinavir, saquinavir, ritonavir, indinavir, amprenavir, lopinavir and tipranavir) have induced several cellular and biochemical alterations on fungal cells. Some of the metabolic perturbations are extremely drastic to the fungal cells, which culminate in arresting nutrition, growth, proliferation, differentiation, adhesion, invasion and dissemination. In the present chapter, we will describe the beneficial effects of aspartic PIs against some human fungal pathogens, reporting in details their mechanisms capable in disturbing the fungal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiss E, Shadomy HJ, Lyon GM (2011) Fundamental medical mycology. Wiley-Blackwell, London

    Google Scholar 

  2. Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14

    CAS  Google Scholar 

  3. Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    PubMed  CAS  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S et al (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    PubMed  Google Scholar 

  5. Horn F, Heinekamp T, Kniemeyer O et al (2012) Systems biology of fungal infection. Front Microbiol 3:108

    PubMed  CAS  Google Scholar 

  6. Nucci M, Marr KA (2005) Emerging fungal diseases. Clin Infect Dis 41:521–526

    PubMed  Google Scholar 

  7. Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809–818

    PubMed  CAS  Google Scholar 

  8. Fera MT, La Camera E, De Sarro A (2009) New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev Anti Infect Ther 7:981–998

    PubMed  CAS  Google Scholar 

  9. Chian-Yong L, Rotstein C (2011) Emerging fungal infections in immunocompromised patients. Med Rep 3:14

    Google Scholar 

  10. Miceli MH, Díaz JA, Lee AS (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151

    PubMed  Google Scholar 

  11. Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431

    PubMed  CAS  Google Scholar 

  12. Marr KA, Carter RA, Crippa F et al (2002) Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 34:909–917

    PubMed  Google Scholar 

  13. Perfect JR (2004) Use of newer antifungal therapies in clinical practice: what do the data tell us? Oncology 18:15–23

    Google Scholar 

  14. Sable CA, Strohmaier KM, Chodakewitz JA (2008) Advances in antifungal therapy. Annu Rev Med 59:361–379

    PubMed  CAS  Google Scholar 

  15. Petrikkos G, Skiada A (2007) Recent advances in antifungal chemotherapy. Int J Antimicrob Agents 30:108–117

    PubMed  CAS  Google Scholar 

  16. Naeger-Murphy N, Pile JC (2009) Clinical indications for newer antifungal agents. J Hosp Med 4:102–111

    PubMed  Google Scholar 

  17. Chen SC, Playford EG, Sorrell TC (2010) Antifungal therapy in invasive fungal infections. Curr Opin Pharmacol 10:522–530

    PubMed  CAS  Google Scholar 

  18. Gupta AK, Tomas E (2003) New antifungal agents. Dermatol Clin 21:565–576

    PubMed  CAS  Google Scholar 

  19. Lai CC, Tan CK, Huang YT et al (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85

    PubMed  CAS  Google Scholar 

  20. Pemán J, Cantón E, Espinel-Ingroff A (2009) Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther 7:453–460

    PubMed  Google Scholar 

  21. Kathiravan MK, Salake AB, Chothe AS et al (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698

    PubMed  CAS  Google Scholar 

  22. Gubbins PO, Anaissie EJ (2009) Antifungal therapy. In: Anaissie EJ, McGinnis MR, Pfaller MA (eds) Clinical mycology, 2nd edn. Elsevier, New York, pp 161–197

    Google Scholar 

  23. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56:211–224

    PubMed  CAS  Google Scholar 

  24. Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005–2009). Rev Iberoam Micol 26:15–22

    PubMed  Google Scholar 

  25. Butts A, Krysan DJ (2012) Antifungal drug discovery: something old and something new. PLoS Pathog 8:e1002870

    PubMed  CAS  Google Scholar 

  26. Mehra T, Köberle M, Braunsdorf C et al (2012) Alternative approaches to antifungal therapies. Exp Dermatol 21:778–782

    PubMed  CAS  Google Scholar 

  27. Hube B (2000) Extracellular peptidases of human pathogenic fungi. Contrib Microbiol 5:126–137

    PubMed  CAS  Google Scholar 

  28. Santos ALS (2010) HIV aspartyl protease inhibitors as promising compounds against Candida albicans. World J Biol Chem 1:21–30

    PubMed  Google Scholar 

  29. Santos ALS (2010) Aspartic peptidase inhibitors as potential bioactive pharmacological compounds against human fungal pathogens. In: Ahmad I, Owais M, Shahid M, Aqil F (eds) Combating fungal infections: problems and remedy, 1st edn. Springer, Heidelberg, pp 289–326

    Google Scholar 

  30. Santos ALS (2011) Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2:48–58

    PubMed  Google Scholar 

  31. Santos ALS (2011) Aspartic proteases of human pathogenic fungi are prospective targets for the generation of novel and effective antifungal inhibitors. Curr Enz Inhib 7:96–118

    Google Scholar 

  32. TurK B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev 5:785–799

    CAS  Google Scholar 

  33. López-Otín C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    PubMed  Google Scholar 

  34. Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724

    PubMed  CAS  Google Scholar 

  35. Sauer RT, Bolon DN, Burton BM et al (2004) Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 119:9–18

    PubMed  CAS  Google Scholar 

  36. Siegel RM (2006) Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6:308–317

    PubMed  CAS  Google Scholar 

  37. Oikonomopoulou K, Hansen KK, Saifeddine M et al (2006) Proteinase-mediated cell signaling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biol Chem 387:677–685

    PubMed  CAS  Google Scholar 

  38. Urban S (2006) Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev 20:3054–3068

    PubMed  CAS  Google Scholar 

  39. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8:221–233

    PubMed  CAS  Google Scholar 

  40. Marino G, Uria JA, Puente X et al (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278:3671–3678

    PubMed  CAS  Google Scholar 

  41. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    PubMed  CAS  Google Scholar 

  42. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    PubMed  Google Scholar 

  43. Perona J, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    PubMed  CAS  Google Scholar 

  44. Gillmor SA, Craick CS, Fletterick RJ (1997) Structural determinants of specificity in the cysteine protease cruzain. Protein Sci 6:1603–1611

    PubMed  CAS  Google Scholar 

  45. Sajid M, Mckerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    PubMed  CAS  Google Scholar 

  46. Garcia-Touchard A, Henry TD, Sangiorgi G et al (2005) Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119–1127

    PubMed  CAS  Google Scholar 

  47. Maupin-Furlow JA, Gil MA, Humbard MA et al (2005) Archaeal proteasomes and other regulatory proteases. Curr Opin Microbiol 8:720–728

    PubMed  CAS  Google Scholar 

  48. Diamond SL (2007) Methods for mapping protease specificity. Curr Opin Chem Biol 11:46–51

    PubMed  CAS  Google Scholar 

  49. Otto HH, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–171

    PubMed  CAS  Google Scholar 

  50. Vandeputte-Rutten L, Gros P (2002) Novel proteases: common themes and surprising features. Curr Opin Struct Biol 12:704–708

    PubMed  CAS  Google Scholar 

  51. Rao MB, Tanksale AM, Ghatge MS et al (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  52. Barrett AJ, Rawlings ND, O’Brien EA (2001) The MEROPS database as a protease information system. J Struct Biol 134:95–102

    PubMed  CAS  Google Scholar 

  53. Barrett AJ, Tolle DP, Rawlings ND (2003) Managing peptidases in the genomic era. Biol Chem 384:873–882

    PubMed  CAS  Google Scholar 

  54. Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    PubMed  CAS  Google Scholar 

  55. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272

    PubMed  CAS  Google Scholar 

  56. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    PubMed  CAS  Google Scholar 

  57. Rawlings ND, Barrett AJ, Baterman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    PubMed  CAS  Google Scholar 

  58. James MNG, Sielecki A, Saliturot F et al (1982) Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc Natl Acad Sci U S A 79:6137–6141

    PubMed  CAS  Google Scholar 

  59. Hyland LJ, Tomaszek TA, Meek TD (1991) Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30:8454–8463

    PubMed  CAS  Google Scholar 

  60. Tossi A, Bonin I, Antcheva N et al (2000) Aspartic protease inhibitors. An integrated approach for the design and synthesis of diaminodiol based peptidomimetics. Eur J Biochem 267:1715–1722

    PubMed  CAS  Google Scholar 

  61. Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Chem 19:189–215

    CAS  Google Scholar 

  62. Blundell TL, Johnson MS (1993) Catching a common fold. Protein Sci 2:877–883

    PubMed  CAS  Google Scholar 

  63. Coates L, Erskine PT, Mall S et al (2006) X-ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases. Eur Biophys J 35:559–566

    PubMed  CAS  Google Scholar 

  64. Umezawa H, Aoyagi T, Morishima H et al (1970) Pepstatin, a new peptide inhibitor produced by actinomycetes. J Antibiotics 23:259–262

    CAS  Google Scholar 

  65. Koelsch G, Mares M, Metcalf P et al (1994) Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett 343:6–10

    PubMed  CAS  Google Scholar 

  66. Foltmann B (1988) Structure and function of proparts in zymogens for aspartic proteinases. Biol Chem 369:311–314

    CAS  Google Scholar 

  67. Hill J, Phylip L (1997) Bacterial aspartic proteinases. FEBS Lett 409:357–360

    PubMed  CAS  Google Scholar 

  68. Dash C, Kulkarni A, Dunn B et al (2003) Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38:89–119

    PubMed  CAS  Google Scholar 

  69. Cooper JB (2002) Aspartic proteinases in disease: a structural perspective. Curr Drug Targets 3:155–173

    PubMed  CAS  Google Scholar 

  70. Fruton J (2002) A history of pepsin and related enzymes. Quart Rev Biol 77:127–147

    PubMed  CAS  Google Scholar 

  71. Sielecki R, Fujinanga M, Read RJ et al (1991) Refined structure of porcine pepsinogenat 1.8 Å resolution. J Mol Biol 219:671–692

    PubMed  CAS  Google Scholar 

  72. Suguna K, Padlan EA, Smith CW et al (1987) Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc Natl Acad Sci U S A 84:7009–7013

    PubMed  CAS  Google Scholar 

  73. Holm I, Ollo R, Panthier J et al (1984) Evolution of aspartyl proteases by gene duplication: the mouse renin gene is organized in two homologous clusters of four exons. EMBO J 3:557–562

    PubMed  CAS  Google Scholar 

  74. Veerapandian B, Cooper J, Sali A et al (1992) Direct observation by X-ray analysis of the tetrahedral “intermediate” of aspartic proteinases. Protein Sci 1:322–328

    PubMed  CAS  Google Scholar 

  75. Northrop D (2001) Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc Chem Res 34:790–797

    PubMed  CAS  Google Scholar 

  76. Dunn B (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 102:4431–4458

    PubMed  CAS  Google Scholar 

  77. Nguyen JT, Hamada Y, Kimura T et al (2008) Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm Chem Life Sci 341:523–535

    CAS  Google Scholar 

  78. Stewart K, Abad-Zapatero C (2001) Candida proteases and their inhibition: prospects for antifungal therapy. Curr Med Chem 8:941–948

    PubMed  CAS  Google Scholar 

  79. Monod M, Capoccia S, Lechenne B et al (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419

    PubMed  CAS  Google Scholar 

  80. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    PubMed  CAS  Google Scholar 

  81. Naglik JR, Albrecht A, Bader O et al (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    PubMed  CAS  Google Scholar 

  82. Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host-pathogen interaction. Immunobiology 211:263–281

    PubMed  CAS  Google Scholar 

  83. Leung D, Abbenante G, Fairlie DP (2000) Protease inhibitors: current status and future prospects. J Med Chem 43:305–341

    PubMed  CAS  Google Scholar 

  84. Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem 1:71–104

    PubMed  CAS  Google Scholar 

  85. Eder J, Hommel U, Cumin F et al (2007) Aspartic proteases in drug discovery. Curr Pharm Des 13:271–285

    PubMed  CAS  Google Scholar 

  86. Santos ALS, Braga-Silva LA (2013) Aspartic protease inhibitors: effective drugs against the human fungal pathogen Candida albicans. Mini Rev Med Chem 13:155–162

    PubMed  CAS  Google Scholar 

  87. Braga-Silva LA, Santos ALS (2011) Aspartic protease inhibitors as potential anti–Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis. Curr Med Chem 18: 2401–2419

    PubMed  CAS  Google Scholar 

  88. Wu T, Wright K, Hurst SF et al (2000) Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrob Agents Chemother 44:1200–1208

    PubMed  CAS  Google Scholar 

  89. Ripeau JS, Aumont F, Belhumeur P et al (2002) Effect of the echinocandin caspofungin on expression of Candida albicans secretory aspartyl proteinases and phospholipase in vitro. Antimicrob Agents Chemother 46:3096–3100

    PubMed  CAS  Google Scholar 

  90. Copping VM, Barelle CJ, Hube B et al (2005) Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother 55:645–654

    PubMed  CAS  Google Scholar 

  91. Navarathna DH, Hornby JM, Hoerrmann N et al (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159

    PubMed  CAS  Google Scholar 

  92. Mores AU, Souza RD, Cavalca L et al (2011) Enhancement of secretory aspartyl protease production in biofilms of Candida albicans exposed to sub-inhibitory concentrations of fluconazole. Mycoses 54:195–201

    PubMed  CAS  Google Scholar 

  93. Dornelas-Ribeiro M, Pinheiro EO, Guerra C et al (2012) Cellular characterisation of Candida tropicalis presenting fluconazole-related trailing growth. Mem Inst Oswaldo Cruz 107:31–38

    PubMed  CAS  Google Scholar 

  94. Bode W, Huber R (2000) Structural basis of the endoproteinase protein inhibitor interaction. Biochim Biophys Acta 1477:241–252

    PubMed  CAS  Google Scholar 

  95. Babiker A, Darbyshire J, Pezzotti P et al (2002) Changes over calendar time in the risk of specific first AIDS-defining events following HIV seroconversion, adjusting for competing risks. Int J Epidemiol 31:951–958

    PubMed  Google Scholar 

  96. Hoegl L, Thoma-Greber E, Röcken M et al (1998) HIV protease inhibitors influence the prevalence of oral candidosis in HIV-infected patients: results of a study over a period of 2 years. Mycoses 41:321–325

    PubMed  CAS  Google Scholar 

  97. Mirza SA, Phelan M, Rimland D et al (2000) The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992-2000. Clin Infect Dis 36:789–794

    Google Scholar 

  98. Morris A, Lundgren JD, Masur H et al (2004) Current epidemiology of Pneumocystis pneumonia. Emerg Infect Dis 10:1713–1720

    PubMed  Google Scholar 

  99. Tellez I, Barragan M, Franco-Paredes C et al (2008) Pneumocystis jiroveci pneumonia in patients with AIDS in the inner city: a persistent and deadly opportunistic infection. Am J Med Sci 335:192–197

    PubMed  Google Scholar 

  100. Ghannoum M, Abu Elteen K (1986) Correlative relationship between proteinase production, adherence and pathogenicity of various strains of Candida albicans. J Med Vet Mycol 24:407–413

    PubMed  CAS  Google Scholar 

  101. Cassone A, De Bernardis F, Mondello F et al (1987) Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis 156:777–783

    PubMed  CAS  Google Scholar 

  102. Kobayashi I, Kondoh Y, Shimizu K, Tanaka K et al (1989) A role of secreted proteinase of Candida albicans for the invasion of chick chorioallantoic membrane. Microbiol Immunol 33:709–719

    PubMed  CAS  Google Scholar 

  103. Louie A, Dixon DM, El-Maghrabi EA et al (1994) Relationship between Candida albicans epidermolytic proteinase activity and virulence in mice. J Med Vet Mycol 32:59–64

    PubMed  CAS  Google Scholar 

  104. De Bernardis F, Sullivan PA, Cassone A (2001) Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med Mycol 39:303–313

    PubMed  Google Scholar 

  105. Palmeira VF, Kneipp LF, Alviano CS et al (2006) Secretory aspartyl peptidase from mycelia of Fonsecaea pedrosoi: effect of HIV peptidase inhibitors. Res Microbiol 157:819–826

    PubMed  CAS  Google Scholar 

  106. Palmeira VF, Kneipp LF, Alviano CS et al (2006) The major chromoblastomycosis fungal pathogen Fonsecaea pedrosoi extracellularly releases proteolytic enzymes whose expression is modulated by culture medium composition: implications on the fungal development and cleavage of key’s host structures. FEMS Immunol Med Microbiol 46:21–29

    PubMed  CAS  Google Scholar 

  107. Palmeira VF, Kneipp LF, Rozental S et al (2008) Beneficial effects of HIV aspartyl peptidase inhibitors on the human pathogen Fonsecaea pedrosoi: promising compounds to arrest key fungal biological process and virulence. PLoS ONE 3:e3382

    PubMed  Google Scholar 

  108. Borg von Zepelin M, Meyer I, Thomssen R et al (1999) HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol 113:747–751

    PubMed  Google Scholar 

  109. Korting HC, Schaller M, Eder G et al (1999) Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother 43:2038–2042

    PubMed  CAS  Google Scholar 

  110. Cassone A, De Bernardis F, Torosantucci A et al (1999) In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis 180:448–453

    PubMed  CAS  Google Scholar 

  111. Braga-Silva LA, Mogami SS, Valle RS et al (2010) Multiple effects of amprenavir against Candida albicans. FEMS Yeast Res 10:221–224

    PubMed  CAS  Google Scholar 

  112. Skrbec D, Romeo D (2002) Inhibition of Candida albicans secreted aspartic protease by a novel series of peptidomimetics, also active on the HIV-1 protease. Biochem Biophys Res Commun 297:1350–1353

    PubMed  CAS  Google Scholar 

  113. Pichova I, Pavlickova L, Dostal J et al (2001) Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. Inhibition with peptidomimetic inhibitors. Eur J Biochem 268:2669–2677

    PubMed  CAS  Google Scholar 

  114. Hrusková-Heidingsfeldová O, Dostál J, Majer F et al (2009) Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 390:259–268

    PubMed  Google Scholar 

  115. Blasi E, Colombari B, Orsi CF et al (2004) The human immunodeficiency virus (HIV) protease inhibitor indinavir directly affects the opportunistic fungal pathogen Cryptococcus neoformans. FEMS Immunol Med Microbiol 42:187–195

    PubMed  CAS  Google Scholar 

  116. Pinti M, Orsi CF, Gibellini L et al (2007) Identification and characterization of an aspartyl protease from Cryptococcus neoformans. FEBS Lett 581:3882–3886

    PubMed  CAS  Google Scholar 

  117. Calugi C, Guarna A, Trabocchi A (2013) Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors. J Enzyme Inhib Med Chem 28(5):936–943

    PubMed  CAS  Google Scholar 

  118. Calugi C, Trabocchi A, De Bernardis F et al (2012) Bicyclic peptidomimetics targeting secreted aspartic protease 2 (SAP2) from Candida albicans reveal a constrained inhibitory chemotype. Bioorg Med Chem 20:7206–7213

    PubMed  CAS  Google Scholar 

  119. Pranav Kumar SK, Kulkarni VM (2002) Insights into the selective inhibition of Candida albicans secreted aspartyl protease: a docking analysis study. Bioorg Med Chem 10:1153–1170

    PubMed  CAS  Google Scholar 

  120. Antipov E, Cho AE, Wittrup KD et al (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105:17694–17699

    PubMed  CAS  Google Scholar 

  121. Harriman DJ, Lambropoulos A, Deslongchamps G (2007) In silico correlation of enantioselectivity for the TADDOL catalyzed asymmetric hetero-Diels-Alder reaction. Tetrahedron Lett 48:689–692

    CAS  Google Scholar 

  122. Hermann JC, Ghanem E, Li Y et al (2006) Predicting substrates by docking high-energy intermediates to enzyme structures. J Am Chem Soc 128:15882–15891

    PubMed  CAS  Google Scholar 

  123. Soares TA, Goodsell D, Ferreira R et al (2000) Ionization state and molecular docking studies for the macrophage migration inhibitory factor: the role of lysine 32 in the catalytic mechanism. J Mol Recognit 13:146–156

    PubMed  CAS  Google Scholar 

  124. Soares TA, Goodsell DS, Briggs JM et al (1999) Docking of 4-oxalocrotonate tautomerase substrates: implications for the catalytic mechanism. Biopolymers 50:319–328

    PubMed  CAS  Google Scholar 

  125. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    PubMed  CAS  Google Scholar 

  126. Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421

    PubMed  CAS  Google Scholar 

  127. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42:724–733

    PubMed  CAS  Google Scholar 

  128. Mohan V, Gibbs AC, Cummings MD et al (2005) Docking: successes and challenges. Curr Pharm Des 11:323–333

    PubMed  CAS  Google Scholar 

  129. Kempf DJ, Marsh KC, Denissen JF et al (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A 92:2484–2488

    PubMed  CAS  Google Scholar 

  130. Roberts NA, Martin JA, Kinchington D et al (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    PubMed  CAS  Google Scholar 

  131. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    PubMed  CAS  Google Scholar 

  132. Gruber A, Speth C, Lukasser-Vogl E et al (1999) Human immunodeficiency virus type 1 protease inhibitor attenuates Candida albicans virulence properties in vitro. Immunopharmacology 41:227–234

    PubMed  CAS  Google Scholar 

  133. Gruber A, Berlit J, Speth C et al (1999) Dissimilar attenuation of Candida albicans virulence properties by human immunodeficiency virus type 1 protease inhibitors. Immunobiology 201:133–144

    PubMed  CAS  Google Scholar 

  134. Schaller M, Krnjaic N, Niewerth M et al (2003) Effect of antimycotic agents on the activity of aspartyl proteinases secreted by Candida albicans. J Med Microbiol 52:247–249

    PubMed  CAS  Google Scholar 

  135. Blanco MT, Hurtado C, Pérez-Giraldo C et al (2003) Effect of ritonavir and saquinavir on Candida albicans growth rate and in vitro activity of aspartyl proteinases. Med Mycol 41:167–170

    PubMed  CAS  Google Scholar 

  136. Santos ALS, Carvalho IM, Silva BA et al (2006) Secretion of serine peptidase by a clinical strain of Candida albicans: influence of growth conditions and cleavage of human serum proteins and extracellular matrix components. FEMS Immunol Med Microbiol 46:209–220

    PubMed  Google Scholar 

  137. Dostál J, Hamal P, Pavlícková L et al (2003) Simple method for screening Candida species isolates for the presence of secreted proteinases: a tool for the prediction of successful inhibitory treatment. J Clin Microbiol 41:712–716

    PubMed  Google Scholar 

  138. Asencio MA, Garduño E, Pérez-Giraldo C et al (2005) Exposure to therapeutic concentrations of ritonavir, but not saquinavir, reduces secreted aspartyl proteinase of Candida parapsilosis. Chemotherapy 51:252–255

    PubMed  CAS  Google Scholar 

  139. Monari C, Pericolini E, Bistoni G et al (2005) Influence of indinavir on virulence and growth of Cryptococcus neoformans. J Infect Dis 191:307–311

    PubMed  CAS  Google Scholar 

  140. Atzori C, Angeli E, Mainini A et al (2000) In vitro activity of human immunodeficiency virus protease inhibitors against Pneumocystis carinii. J Infect Dis 181:1629–1634

    PubMed  CAS  Google Scholar 

  141. Atzori C, Villani P, Regazzi M et al (2003) Detection of intrapulmonary concentration of lopinavir in an HIV infected patient. AIDS 17:1710–1711

    PubMed  Google Scholar 

  142. Walzer PD, Ashbaugh A, Collins M et al (2001) Antihuman immunodeficiency virus drugs are ineffective against Pneumocystis carinii in vitro and in vivo. J Infect Dis 184:1355–1357

    PubMed  CAS  Google Scholar 

  143. Fantoni G, Atzori C, Tronconi E et al (2004) HIV protease inhibitors and Pneumocystis. J Eukaryot Microbiol 51:376–377

    Google Scholar 

  144. Mazza F, Tronconi E, Valerio A et al (2006) The non-peptidic HIV protease inhibitor tipranavir and two synthetic peptidomimetics (TS98 and TS102) modulate Pneumocystis carinii growth and proteasome activity of HEL299 cell line. J Eukaryot Microbiol 53:S144–S146

    PubMed  CAS  Google Scholar 

  145. Moms A, Wachter RM, Luce J et al (2003) Improved survival with highly active antiretroviral therapy in HIV infected patients with severe Pneumocystis carinii pneumonia. AIDS 17:73–80

    Google Scholar 

  146. Van Burik JA, Magee PT (2001) Aspects of fungal pathogenesis in humans. Annu Rev Microbiol 55:743–772

    PubMed  Google Scholar 

  147. Casadevall A, Pirofski LA (2009) Virulence factors and their mechanisms of action: the view from a damage-response framework. J Water Health 7(Suppl 1):S2–S18

    PubMed  Google Scholar 

  148. Gow NA, van de Veerdonk FL, Brown AJ et al (2011) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122

    PubMed  Google Scholar 

  149. Wang L, Lin X (2012) Morphogenesis in fungal pathogenicity: shape, size, and surface. PLoS Pathog 12:e1003027

    Google Scholar 

  150. Jacobsen ID, Wilson D, Wächtler B et al (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10:85–93

    PubMed  Google Scholar 

  151. Berman J (2006) Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9:595–601

    PubMed  CAS  Google Scholar 

  152. Peberdy JF (1994) Protein secretion in filamentous fungi—trying to understand a highly productive black box. Trends Biotechnol 2:50–57

    Google Scholar 

  153. Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes–nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 3:381–388

    Google Scholar 

  154. Hruskova-Heidingsfeldova O (2008) Secreted proteins of Candida albicans. Front Biosci 13:7227–7242

    PubMed  CAS  Google Scholar 

  155. Consolaro ME, Gasparetto A, Svidzinski TI et al (2006) Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions. Mycopathologia 162:75–82

    PubMed  CAS  Google Scholar 

  156. Cenci E, Francisci D, Belfiori B et al (2008) Tipranavir exhibits different effects on opportunistic pathogenic fungi. J Infect 56:58–64

    PubMed  Google Scholar 

  157. De Bernardis F, Tacconelli E, Mondello F et al (2004) Anti-retroviral therapy with protease inhibitors decreases virulence enzyme expression in vivo by Candida albicans without selection of avirulent fungus strains or decreasing their anti-mycotic susceptibility. FEMS Immunol Med Microbiol 1:27–34

    Google Scholar 

  158. Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 4:406–412

    Google Scholar 

  159. O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 3:387–408

    Google Scholar 

  160. Tsang CS, Hong I (2010) HIV protease inhibitors differentially inhibit adhesion of Candida albicans to acrylic surfaces. Mycoses 53:488–494

    PubMed  CAS  Google Scholar 

  161. Ollert MW, Sohnchen R, Korting HC et al (1993) Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    PubMed  CAS  Google Scholar 

  162. Bektic J, Lell CP, Fuchs A et al (2001) HIV protease inhibitors attenuate adherence of Candida albicans to epithelial cells in vitro. FEMS Immunol Med Microbiol 31:65–71

    PubMed  CAS  Google Scholar 

  163. Falkensammer B, Pilz G, Bektic J et al (2007) Absent reduction by HIV protease inhibitors of Candida albicans adhesion to endothelial cells. Mycoses 50:172–177

    PubMed  CAS  Google Scholar 

  164. Borg von Zepelin M, Beggah S, Boggian K et al (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28:543–554

    PubMed  CAS  Google Scholar 

  165. Cuéllar-Cruz M, López-Romero E, Villagómez-Castro JC et al (2012) Candida species: new insights into biofilm formation. Future Microbiol 6:755–771

    Google Scholar 

  166. Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160

    PubMed  CAS  Google Scholar 

  167. De Bernardis F, Boccanera M, Adriani D et al (1997) Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats. Infect Immun 65:3399–3405

    PubMed  Google Scholar 

  168. De Bernardis F, Mondello F, Scaravelli G et al (1999) High aspartyl proteinase production and vaginitis in human immunodeficiency virus-infected women. J Clin Microbiol 37:1376–1380

    PubMed  Google Scholar 

  169. Edison AM, Manning-Zweerink M (1988) Comparison of the extracellular proteinase activity produced by a low-virulence mutant of Candida albicans and its wild-type parent. Infect Immun 56:1388–1390

    PubMed  CAS  Google Scholar 

  170. Fallon K, Bausch K, Noonan J et al (1997) Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun 65:551–556

    PubMed  CAS  Google Scholar 

  171. Rüchel R, Ritter B, Schaffrinski M (1990) Modulation of experimental systemic murine candidosis by intravenous pepstatin. Zentralbl Bakteriol 273:391–403

    PubMed  Google Scholar 

  172. Zotter C, Haustein UF, Schonborn C et al (1990) Effect of pepstatin A on Candida albicans infection in the mouse. Dermatol Monatsschr 176:189–198

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho de Ensino e Pesquisa para Graduados da Universidade Federal do Rio de Janeiro (CEPG-UFRJ), Fundação Oswaldo Cruz (FIOCRUZ), Fundação de Amparo à Ciência do Estado de Pernambuco (FACEPE), NanoBiotec-BR and INCT-INAMI. André L.S. Santos was supported by CNPq and FAPERJ fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. S. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santos, A.L.S. et al. (2013). Aspartic Proteolytic Inhibitors Induce Cellular and Biochemical Alterations in Fungal Cells. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_7

Download citation

Publish with us

Policies and ethics