Skip to main content

Escalated Expression of Matrix Metalloproteinases in Osteoarthritis

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

  • 1057 Accesses

Abstract

Osteoarthritis (OA) is a disease that damages the joint tissues and often destroys the cartilage lining of the joint tissue irreversibly. This leads to loss of joint function making movement difficult and crippling the affected individuals. OA primarily affects elderly population and with increasing aging human population in the world it is going to affect a very large portion of the population in the near future. Unfortunately there is no current method of treatment of this disease except by suppressing the pain with pain-killer and occasional use of steroid to reduce excruciating pain. More radical treatment and often the only remaining option is surgery where affected joint tissue is removed and replaced with artificial prosthetics embedded into the bone, a procedure called arthroplasty. The surgical procedure is costly and sometimes associated with recurring post-operative problems. New approaches to control and cure OA could come from a better understanding of the cellular and subcellular events in the joint tissues of OA patients. Since cartilage depletion is a major pathological event in the progression of OA, much attention has been given to the cellular mechanisms responsible for the cartilage damage. This review will address this cellular process by focusing on enzymes which are activated in the cartilage tissue and cause its depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson SB, Attur M, Yazici Y (2006) Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheum 2:304–312

    Article  CAS  Google Scholar 

  2. Goldring MB (2000) Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2:459–465

    Article  PubMed  CAS  Google Scholar 

  3. Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12

    Article  PubMed  Google Scholar 

  4. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  PubMed  CAS  Google Scholar 

  5. Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4:157–164

    Article  PubMed  CAS  Google Scholar 

  6. Vincenti MP, Brinckerhoff CE (2007) Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 213:355–364

    Article  PubMed  CAS  Google Scholar 

  7. Ray A, Bal BS, Ray BK (2005) Transcriptional induction of matrix metalloproteinase-9 in the chondrocyte and synoviocyte cells is regulated via a novel mechanism: evidence for functional cooperation between serum amyloid A-activating factor-1 and AP-1. J Immunol 175:4039–4048

    PubMed  CAS  Google Scholar 

  8. Ray A, Kuroki K, Cook JL et al (2003) Induction of matrix metalloproteinase 1 gene expression is regulated by inflammation-responsive transcription factor SAF-1 in osteoarthritis. Arthritis Rheum 48:134–145

    Article  PubMed  CAS  Google Scholar 

  9. Takahra T, Smart DE, Oakley F et al (2004) Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1. Int J Biochem Cell Biol 36:353–363

    Article  PubMed  CAS  Google Scholar 

  10. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  11. Tetsunaga T, Nishida K, Furumatsu T et al (2011) Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthr Cartil 19:222–232

    Article  PubMed  CAS  Google Scholar 

  12. Kumar D, Ray A, Ray BK (2009) Transcriptional synergy mediated by SAF-1 and AP-1: critical role of N-terminal polyalanine and two zinc finger domains of SAF-1. J Biol Chem 284:1853–1862

    Article  PubMed  CAS  Google Scholar 

  13. Bond M, Chase AJ, Baker AH et al (2001) Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565

    Article  PubMed  CAS  Google Scholar 

  14. Crowe DL, Brown TN (1999) Transcriptional inhibition of matrix metalloproteinase 9 (MMP-9) activity by a c-fos/estrogen receptor fusion protein is mediated by the proximal AP-1 site of the MMP-9 promoter and correlates with reduced tumor cell invasion. Neoplasia 1:368–372

    Article  PubMed  CAS  Google Scholar 

  15. Ray A, Fields AP, Ray BK (2000) Activation of transcription factor SAF involves its phosphorylation by protein kinase C. J Biol Chem 275:39727–39733

    Article  PubMed  CAS  Google Scholar 

  16. Ray A, Ray P, Guthrie N et al (2003) Protein kinase a signaling pathway regulates transcriptional activity of SAF-1 by unmasking its DNA-binding domains. J Biol Chem 278:22586–22595

    Article  PubMed  CAS  Google Scholar 

  17. Ray A, Yu GY, Ray BK (2002) Cytokine-responsive induction of SAF-1 activity is mediated by a mitogen-activated protein kinase signaling pathway. Mol Cell Biol 22:1027–1035

    Article  PubMed  CAS  Google Scholar 

  18. Ray A, Ray BK (2008) An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis. Biorheology 45:399–409

    PubMed  Google Scholar 

  19. Pottenger LA, Phillips FM, Draganich LF (1990) The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum 33:853–858

    Article  PubMed  CAS  Google Scholar 

  20. Lafeber FP, van der Kraan PM, van Roy HL et al (1992) Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage. Am J Pathol 140:1421–1429

    PubMed  CAS  Google Scholar 

  21. Matyas JR, Sandell LJ, Adams ME (1997) Gene expression of type II collagens in chondro-osteophytes in experimental osteoarthritis. Osteoarthr Cartil 5:99–105

    Article  PubMed  CAS  Google Scholar 

  22. Girkontaite I, Frischholz S, Lammi P et al (1996) Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol 15:231–238

    Article  PubMed  CAS  Google Scholar 

  23. Aigner T, Reichenberger E, Bertling W et al (1993) Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol 63:205–211

    Article  PubMed  CAS  Google Scholar 

  24. Sandell LJ, Morris N, Robbins JR et al (1991) Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol 114:1307–1319

    Article  PubMed  CAS  Google Scholar 

  25. Oganesian A, Zhu Y, Sandell LJ (1997) Type IIA procollagen amino propeptide is localized in human embryonic tissues. J Histochem Cytochem 45:1469–1480

    Article  PubMed  CAS  Google Scholar 

  26. Schmid TM, Linsenmayer TF (1985) Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol 107:373–381

    Article  PubMed  CAS  Google Scholar 

  27. Aigner T, Dietz U, Stoss H et al (1995) Differential expression of collagen types I, II, III, and X in human osteophytes. Lab Invest 73:236–243

    PubMed  CAS  Google Scholar 

  28. Hashimoto S, Creighton-Achermann L, Takahashi K et al (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 10:180–187

    Article  PubMed  CAS  Google Scholar 

  29. Ferrara N, Gerber HP (2001) The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 106:148–156

    Article  PubMed  CAS  Google Scholar 

  30. Gerber HP, Vu TH, Ryan AM et al (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  31. Pufe T, Petersen W, Tillmann B et al (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44:1082–1088

    Article  PubMed  CAS  Google Scholar 

  32. Haywood L, McWilliams DF, Pearson CI et al (2003) Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum 48:2173–2177

    Article  PubMed  CAS  Google Scholar 

  33. Pufe T, Harde V, Petersen W et al (2004) Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol 202:367–374

    Article  PubMed  CAS  Google Scholar 

  34. Ray BK, Shakya A, Ray A (2007) Vascular Endothelial Growth Factor Expression in Arthritic Joint Is regulated by SAF-1 Transcription Factor. J Immunol 178:1774–1782

    PubMed  CAS  Google Scholar 

  35. Brown RA, Weiss JB (1988) Neovascularisation and its role in the osteoarthritic process. Ann Rheum Dis 47:881–885

    Article  PubMed  CAS  Google Scholar 

  36. Marshall JL, Olsson SE (1971) Instability of the knee. A long-term experimental study in dogs. J Bone Joint Surg Am 53:1561–1570

    PubMed  CAS  Google Scholar 

  37. van Beuningen HM, van der Kraan PM, Arntz OJ et al (1994) Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71:279–290

    PubMed  Google Scholar 

  38. van Beuningen HM, Glansbeek HL, van der Kraan PM et al (2000) Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthr Cartil 8:25–33

    Article  PubMed  Google Scholar 

  39. Bakker AC, van de Loo FA, van Beuningen HM et al (2001) Overexpression of active TGF-β1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr Cartil 9:128–136

    Article  PubMed  CAS  Google Scholar 

  40. Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9

    Article  PubMed  CAS  Google Scholar 

  41. Nakao A, Imamura T, Souchelnytskyi S et al (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    Article  PubMed  CAS  Google Scholar 

  42. Lotz M, Kekow J, Carson DA (1990) Transforming growth factor-beta and cellular immune responses in synovial fluids. J Immunol 144:4189–4194

    PubMed  CAS  Google Scholar 

  43. van Beuningen HM, Glansbeek HL, van der Kraan PM et al (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthr Cartil 6:306–317

    Article  PubMed  Google Scholar 

  44. Scharstuhl A, Glansbeek HL, van Beuningen HM et al (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169:507–514

    PubMed  CAS  Google Scholar 

  45. Blom AB, van Lent PL, Holthuysen AE et al (2004) Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 12:627–635

    Article  PubMed  Google Scholar 

  46. Nishida K, Doi T, Matsuo M et al (2001) Involvement of nitric oxide in chondrocyte cell death in chondro-osteophyte formation. Osteoarthr Cartil 9:232–237

    Article  PubMed  CAS  Google Scholar 

  47. Burtis WJ, Wu T, Bunch C et al (1987) Identification of a novel 17,000-dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy. J Biol Chem 262:7151–7156

    PubMed  CAS  Google Scholar 

  48. Suva LJ, Winslow GA, Wettenhall RE et al (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237:893–896

    Article  PubMed  CAS  Google Scholar 

  49. Dempster DW, Cosman F, Parisien M et al (1993) Anabolic actions of parathyroid hormone on bone.[erratum appears in Endocr Rev 1994 Apr;15(2):261]. Endocr Rev 14:690–709

    PubMed  CAS  Google Scholar 

  50. Tam CS, Heersche JN, Murray TM et al (1982) Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 110:506–512

    Article  PubMed  CAS  Google Scholar 

  51. Zhang P, Jobert AS, Couvineau A et al (1998) A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab 83:3365–3368

    Article  PubMed  CAS  Google Scholar 

  52. Jobert AS, Zhang P, Couvineau A et al (1998) Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest 102:34–40

    Article  PubMed  CAS  Google Scholar 

  53. Schipani E, Langman CB, Parfitt AM et al (1996) Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. New Engl J Med 335:708–714

    Article  PubMed  CAS  Google Scholar 

  54. Schipani E, Kruse K, Juppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    Article  PubMed  CAS  Google Scholar 

  55. Weir EC, Philbrick WM, Amling M et al (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A 93:10240–10245

    Article  PubMed  CAS  Google Scholar 

  56. Kronenberg HM, Lanske B, Kovacs CS et al (1998) Functional analysis of the PTH/PTHrP network of ligands and receptors. Recent Prog Horm Res 53:283–301

    PubMed  CAS  Google Scholar 

  57. Amizuka N, Warshawsky H, Henderson JE et al (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623

    Article  PubMed  CAS  Google Scholar 

  58. Schipani E, Lanske B, Hunzelman J et al (1997) Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci U S A 94:13689–13694

    Article  PubMed  CAS  Google Scholar 

  59. Amizuka N, Karaplis AC, Henderson JE et al (1996) Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 175:166–176

    Article  PubMed  CAS  Google Scholar 

  60. Miao D, He B, Jiang Y et al (2005) Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest 115:2402–2411

    Article  PubMed  CAS  Google Scholar 

  61. Fu Q, Jilka RL, Manolagas SC et al (2002) Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem 277:48868–48875

    Article  PubMed  CAS  Google Scholar 

  62. Vortkamp A, Lee K, Lanske B et al (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    Article  PubMed  CAS  Google Scholar 

  63. Ray A, Kumar D, Shakya A et al (2004) Serum amyloid activating factor-1 transgenic mice are prone to develop a severe form of inflammation-induced arthritis. J Immunol 173:4684–4691

    PubMed  CAS  Google Scholar 

  64. Ray A, Shakya A, Kumar D et al (2004) Overexpression of serum amyloid a activating factor 1 inhibits cell proliferation by the induction of cyclin-dependent protein kinase inhibitor p21WAF-1/Cip-1/Sdi-1 expression. J Immunol 172:5006–5015

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpana Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhar, S., Ray, B.K., Ray, A. (2013). Escalated Expression of Matrix Metalloproteinases in Osteoarthritis. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_18

Download citation

Publish with us

Policies and ethics