Skip to main content

Matrix Metalloproteinases in Bone Health and Disease

  • Chapter
  • First Online:
  • 1085 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

Abstract

During bone development the extracellular matrix (ECM) undergoes extensive modeling and remodeling by different proteases including members of the matrix metalloproteinase (MMP) family. The most dominant MMPs in bone development are the gelatinases MMP-2 and MMP-9, the collagenase MMP-13 and the membrane-bound MT1-MMP. The enzymes are secreted by different cells in the bone microenvironment, including osteocytes, osteoblasts, osteoclasts, chondrocytes, and endothelial cells. In endochondral bone development, MMPs are involved as early as the initial vascularization of the cartilage anlage while later they regulate chondrocytes proliferation, differentiation, and apoptosis at the growth-plate, as well as vascularization at the chondro-osseous junction. At sites of bone resorption the relative importance of MMPs for matrix degradation depends on the bone type: they participate in resorption of calvarial but not long bones while in the latter they are significant for osteoclasts migration and invasion. The importance of MMPs in bone development is emphasized by several bone-related syndromes in human with single mutations in MMP genes. These, together with targeted mutation in animal models shed light on the role of different MMPs in many aspects of bone development. In this view it is not surprising that MMPs also participate in pathological conditions in bones. They play significant role in migration and establishment of tumor metastasis into bone and tumor-induced osteolysis; they are dominant in the degradation of collagen type I during the course of osteoarthritis; and are even involved in fracture repair. In this chapter we summarize the current knowledge regarding the central role of MMPs in bone health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  PubMed  CAS  Google Scholar 

  2. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  3. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  PubMed  CAS  Google Scholar 

  4. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  PubMed  CAS  Google Scholar 

  5. Groblewska M, Siewko M, Mroczko B et al (2012) The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochem Cytobiol 50:12–19

    Article  PubMed  Google Scholar 

  6. Haeusler G, Walter I, Helmreich M et al (2005) Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. Calcif Tissue Int 76:326–335

    Article  PubMed  CAS  Google Scholar 

  7. Vaananen HK, Zhao H, Mulari M et al (2000) The cell biology of osteoclast function. J Cell Sci 113(Pt 3):377–3781

    PubMed  CAS  Google Scholar 

  8. Delaisse JM, Eeckhout Y, Vaes G (1984) In vivo and in vitro evidence for the involvement of cysteine proteinases in bone resorption. Biochem Biophys Res Commun 125:441–447

    Article  PubMed  CAS  Google Scholar 

  9. Everts V, Delaisse JM, Korper W et al (1992) Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol 150:221–231

    Article  PubMed  CAS  Google Scholar 

  10. Vaes G, Delaisse JM, Eeckhout Y (1992) Relative roles of collagenase and lysosomal cysteine-proteinases in bone resorption. Matrix Suppl 1:383–388

    PubMed  CAS  Google Scholar 

  11. Everts V, Korper W, Jansen DC et al (1999) Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J 13:1219–1230

    PubMed  CAS  Google Scholar 

  12. Everts V, Delaisse JM, Korper W et al (1998) Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. J Bone Miner Res 13:1420–1430

    Article  PubMed  CAS  Google Scholar 

  13. Sato T, Foged NT, Delaisse JM (1998) The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. J Bone Miner Res 13:59–66

    Article  PubMed  CAS  Google Scholar 

  14. Engsig MT, Chen QJ, Vu TH et al (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    Article  PubMed  CAS  Google Scholar 

  15. Lee ER, Murphy G, El-Alfy M et al (1999) Active gelatinase B is identified by histozymography in the cartilage resorption sites of developing long bones. Dev Dyn 215:190–205

    Article  PubMed  CAS  Google Scholar 

  16. Sato T, del Carmen OM, Hou P et al (1997) Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. J Cell Sci 110(Pt 5):589–596

    PubMed  CAS  Google Scholar 

  17. Sato H, Takino T, Okada Y et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65

    Article  PubMed  CAS  Google Scholar 

  18. Knauper V, Will H, Lopez-Otin C et al (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271:17124–17131

    Article  PubMed  CAS  Google Scholar 

  19. Delaisse JM, Andersen TL, Engsig MT et al (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 61:504–513

    Article  PubMed  CAS  Google Scholar 

  20. Everts V, Delaisse JM, Korper W et al (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90

    Article  PubMed  CAS  Google Scholar 

  21. Chambers TJ, Darby JA, Fuller K (1985) Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell Tissue Res 241:671–675

    Article  PubMed  CAS  Google Scholar 

  22. Chambers TJ, Fuller K (1985) Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J Cell Sci 76:155–165

    PubMed  CAS  Google Scholar 

  23. Heath JK, Atkinson SJ, Meikle MC et al (1984) Mouse osteoblasts synthesize collagenase in response to bone resorbing agents. Biochim Biophys Acta 802:151–154

    Article  PubMed  CAS  Google Scholar 

  24. Al-Mayouf SM, Majeed M, Hugosson C et al (2000) New form of idiopathic osteolysis: nodulosis, arthropathy and osteolysis (NAO) syndrome. Am J Med Genet 93:5–10

    Article  PubMed  CAS  Google Scholar 

  25. Al Aqeel A, Al Sewairi W, Edress B et al (2000) Inherited multicentric osteolysis with arthritis: a variant resembling Torg syndrome in a Saudi family. Am J Med Genet 93:11–18

    Article  PubMed  CAS  Google Scholar 

  26. Martignetti JA, Aqeel AA, Sewairi WA et al (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28:261–265

    Article  PubMed  CAS  Google Scholar 

  27. Tuysuz B, Mosig R, Altun G et al (2009) A novel matrix metalloproteinase 2 (MMP2) terminal hemopexin domain mutation in a family with multicentric osteolysis with nodulosis and arthritis with cardiac defects. Eur J Hum Genet 17:565–572

    Article  PubMed  CAS  Google Scholar 

  28. Zankl A, Bonafe L, Calcaterra V et al (2005) Winchester syndrome caused by a homozygous mutation affecting the active site of matrix metalloproteinase 2. Clin Genet 67:261–266

    Article  PubMed  CAS  Google Scholar 

  29. Rouzier C, Vanatka R, Bannwarth S et al (2006) A novel homozygous MMP2 mutation in a family with Winchester syndrome. Clin Genet 69:271–276

    Article  PubMed  CAS  Google Scholar 

  30. Zhao W, Byrne MH, Wang Y et al (2000) Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 106:941–949

    Article  PubMed  CAS  Google Scholar 

  31. Kennedy AM, Inada M, Krane SM et al (2005) MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest 115:2832–2842

    Article  PubMed  CAS  Google Scholar 

  32. Evans BR, Mosig RA, Lobl M et al (2012) Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome. Am J Hum Genet 91:572–576

    Article  PubMed  CAS  Google Scholar 

  33. Inoue K, Mikuni-Takagaki Y, Oikawa K et al (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281:33814–33824

    Article  PubMed  CAS  Google Scholar 

  34. Holmbeck K, Bianco P, Caterina J et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    Article  PubMed  CAS  Google Scholar 

  35. Zhou Z, Apte SS, Soininen R et al (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97:4052–4057

    Article  PubMed  CAS  Google Scholar 

  36. Egeblad M, Shen HC, Behonick DJ et al (2007) Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development. Dev Dyn 236:1683–1693

    Article  PubMed  CAS  Google Scholar 

  37. Mosig RA, Dowling O, DiFeo A et al (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16:1113–1123

    Article  PubMed  CAS  Google Scholar 

  38. Nyman JS, Lynch CC, Perrien DS et al (2011) Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res 26:1252–1260

    Article  PubMed  CAS  Google Scholar 

  39. Vu TH, Shipley JM, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  PubMed  CAS  Google Scholar 

  40. Ortega N, Behonick DJ, Colnot C et al (2005) Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol Biol Cell 16:3028–3039

    Article  PubMed  CAS  Google Scholar 

  41. Inada M, Wang Y, Byrne MH et al (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101:17192–17197

    Article  PubMed  CAS  Google Scholar 

  42. Stickens D, Behonick DJ, Ortega N et al (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895

    Article  PubMed  CAS  Google Scholar 

  43. Holmbeck K, Bianco P, Chrysovergis K et al (2003) MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol 163:661–671

    Article  PubMed  CAS  Google Scholar 

  44. Bacci G, Longhi A, Bertoni F et al (2006) Bone metastases in osteosarcoma patients treated with neoadjuvant or adjuvant chemotherapy: the Rizzoli experience in 52 patients. Acta Orthop 77:938–943

    Article  PubMed  Google Scholar 

  45. Himelstein BP, Asada N, Carlton MR et al (1998) Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma. Med Pediatr Oncol 31:471–474

    Article  PubMed  CAS  Google Scholar 

  46. Uchibori M, Nishida Y, Nagasaka T et al (2006) Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol 28:33–42

    PubMed  CAS  Google Scholar 

  47. Korpi JT, Hagstrom J, Lehtonen N et al (2011) Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surg Oncol 20:e18–e22

    Article  PubMed  Google Scholar 

  48. Kim SM, Lee H, Park YS et al (2011) ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. J Orthop Res 30:1040–1044

    Article  PubMed  Google Scholar 

  49. Tang CH, Tsai CC (2012) CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-kappaB signaling pathway. Biochem Pharmacol 83:335–344

    Article  PubMed  CAS  Google Scholar 

  50. Wu MH, Lo JF, Kuo CH et al (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026

    Article  PubMed  CAS  Google Scholar 

  51. Ghert M, Simunovic N, Cowan RW et al (2007) Properties of the stromal cell in giant cell tumor of bone. Clin Orthop Relat Res 459:8–13

    Article  PubMed  Google Scholar 

  52. Mak IW, Seidlitz EP, Cowan RW et al (2010) Evidence for the role of matrix metalloproteinase-13 in bone resorption by giant cell tumor of bone. Hum Pathol 41:1320–1329

    Article  PubMed  CAS  Google Scholar 

  53. Thiolloy S, Edwards JR, Fingleton B et al (2012) An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment. PLoS One 7:e29862

    Article  PubMed  CAS  Google Scholar 

  54. Bruni-Cardoso A, Johnson LC, Vessella RL et al (2010) Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment. Mol Cancer Res 8:459–570

    Article  PubMed  CAS  Google Scholar 

  55. Nannuru KC, Futakuchi M, Varney ML et al (2010) Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res 70:3494–3504

    Article  PubMed  CAS  Google Scholar 

  56. Pivetta E, Scapolan M, Pecolo M et al (2011) MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res 13:R105

    Article  PubMed  CAS  Google Scholar 

  57. Morrison C, Mancini S, Cipollone J et al (2011) Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 286:34271–34285

    Article  PubMed  CAS  Google Scholar 

  58. Shah M, Huang D, Blick T et al (2012) An MMP13-selective inhibitor delays primary tumor growth and the onset of tumor-associated osteolytic lesions in experimental models of breast cancer. PLoS One 7:e29615

    Article  PubMed  CAS  Google Scholar 

  59. Thiolloy S, Halpern J, Holt GE et al (2009) Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Res 69:6747–6755

    Article  PubMed  CAS  Google Scholar 

  60. Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145

    Article  PubMed  CAS  Google Scholar 

  61. Reboul P, Pelletier JP, Tardif G et al (1996) The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest 97:2011–2019

    Article  PubMed  CAS  Google Scholar 

  62. Billinghurst RC, Dahlberg L, Ionescu M et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545

    Article  PubMed  CAS  Google Scholar 

  63. Neuhold LA, Killar L, Zhao W et al (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107:35–44

    Article  PubMed  CAS  Google Scholar 

  64. Little CB, Barai A, Burkhardt D et al (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733

    Article  PubMed  CAS  Google Scholar 

  65. Kevorkian L, Young DA, Darrah C et al (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50:131–141

    Article  PubMed  CAS  Google Scholar 

  66. Iliopoulos D, Malizos KN, Oikonomou P et al (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740

    Article  PubMed  Google Scholar 

  67. Schindeler A, McDonald MM, Bokko P et al (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466

    Article  PubMed  CAS  Google Scholar 

  68. Wang K, Vishwanath P, Eichler GS et al (2006) Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression. Matrix Biol 25:271–281

    Article  PubMed  Google Scholar 

  69. Mauch S, Kolb C, Kolb B et al (2002) Matrix metalloproteinase-19 is expressed in myeloid cells in an adhesion-dependent manner and associates with the cell surface. J Immunol 168:1244–1251

    PubMed  CAS  Google Scholar 

  70. van Horssen J, Vos CM, Admiraal L et al (2006) Matrix metalloproteinase-19 is highly expressed in active multiple sclerosis lesions. Neuropathol Appl Neurobiol 32:585–593

    Article  PubMed  Google Scholar 

  71. Behera AK, Hildebrand E, Scagliotti J et al (2005) Induction of host matrix metalloproteinases by Borrelia burgdorferi differs in human and murine lyme arthritis. Infect Immun 73:126–134

    Article  PubMed  CAS  Google Scholar 

  72. Locati M, Deuschle U, Massardi ML et al (2002) Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 168:3557–3562

    PubMed  CAS  Google Scholar 

  73. Ramanathan M, Weinstock-Guttman B, Nguyen LT et al (2001) In vivo gene expression revealed by cDNA arrays: the pattern in relapsing-remitting multiple sclerosis patients compared with normal subjects. J Neuroimmunol 116:213–219

    Article  PubMed  CAS  Google Scholar 

  74. Yamagiwa H, Tokunaga K, Hayami T et al (1999) Expression of metalloproteinase-13 (Collagenase-3) is induced during fracture healing in mice. Bone 25:197–203

    Article  PubMed  CAS  Google Scholar 

  75. Kosaki N, Takaishi H, Kamekura S et al (2007) Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun 354:846–851

    Article  PubMed  CAS  Google Scholar 

  76. Lieu S, Hansen E, Dedini R et al (2011) Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2. Dis Model Mech 4:203–211

    Article  PubMed  CAS  Google Scholar 

  77. Lehmann W, Edgar CM, Wang K et al (2005) Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 36:300–310

    Article  PubMed  CAS  Google Scholar 

  78. Fajardo M, Liu CJ, Ilalov K et al (2010) Matrix metalloproteinases that associate with and cleave bone morphogenetic protein-2 in vitro are elevated in hypertrophic fracture nonunion tissue. J Orthop Trauma 24:557–563

    Article  PubMed  Google Scholar 

  79. Leach RM Jr, Monsonego-Ornan E (2007) Tibial dyschondroplasia 40 years later. Poult Sci 86:2053–2058

    PubMed  CAS  Google Scholar 

  80. Leach RM Jr, Nesheim MC (1965) Nutritional Genetic and Morphological Studies of an Abnormal Cartilage Formation in Young Chicks. J Nutr 86:236–244

    PubMed  Google Scholar 

  81. Leach RM Jr, Nesheim MC (1972) Further studies on tibial dyschondroplasia (cartilage abnormality) in young chicks. J Nutr 102:1673–1680

    PubMed  CAS  Google Scholar 

  82. Dan H, Simsa-Maziel S, Reich A et al (2012) The role of matrix gla protein in ossification and recovery of the avian growth plate. Front Endocrinol (Lausanne) 3:79

    Google Scholar 

  83. Simsa S, Genina O, Ornan EM (2007) Matrix metalloproteinase expression and localization in turkey (Meleagris gallopavo) during the endochondral ossification process. J Anim Sci 85:1393–1401

    Article  PubMed  CAS  Google Scholar 

  84. Simsa S, Hasdai A, Dan H et al (2007) Differential regulation of MMPs and matrix assembly in chicken and turkey growth-plate chondrocytes. Am J Physiol Regul Integr Comp Physiol 292:R2216–R2224

    Article  PubMed  CAS  Google Scholar 

  85. Tong A, Reich A, Genin O et al (2003) Expression of chicken 75-kDa gelatinase B-like enzyme in perivascular chondrocytes suggests its role in vascularization of the growth plate. J Bone Miner Res 18:1443–1452

    Article  PubMed  CAS  Google Scholar 

  86. Hasky-Negev M, Simsa S, Tong A et al (2008) Expression of matrix metalloproteinases during vascularization and ossification of normal and impaired avian growth plate. J Anim Sci 86:1306–1315

    Article  PubMed  CAS  Google Scholar 

  87. Dan H, Simsa-Maziel S, Hisdai A et al (2009) Expression of matrix metalloproteinases during impairment and recovery of the avian growth plate. J Anim Sci 87:3544–3555

    Article  PubMed  CAS  Google Scholar 

  88. Reich A, Jaffe N, Tong A et al (2005) Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J Appl Physiol 98:2381–2389

    Article  PubMed  CAS  Google Scholar 

  89. Reich A, Maziel SS, Ashkenazi Z et al (2009) Involvement of matrix metalloproteinases in the growth plate response to physiological mechanical load. J Appl Physiol 108:172–180

    Article  PubMed  Google Scholar 

  90. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrat Monsonego-Ornan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simsa-Maziel, S., Sela-Donenfeld, D., Monsonego-Ornan, E. (2013). Matrix Metalloproteinases in Bone Health and Disease. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_17

Download citation

Publish with us

Policies and ethics