Skip to main content

ADAMTS13: The von Willebrand Factor Cleaving Protease and Its Role in Thrombotic Thrombocytopenic Purpura

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

  • 1087 Accesses

Abstract

Since the discovery of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) in the twentieth century, significant advancements have been made in understanding its role in hemostasis, molecular structure, genetics and genotype-phenotype relationships. It is a member of the ADAMTS family of matrix proteases and is responsible for the cleavage of ultra-large molecules of von Willebrand factor (VWF), thus regulating the adhesion of platelets to VWF multimers. Structurally, it resembles other members of the ADAMTS family with the exception of the number of thrombospondin-1 repeats and the presence of two CUB domains at the carboxyl terminal. The proteolytic activity of ADAMTS13 is mediated via an adamalysin-like metalloprotease domain. The ADAMTS13 gene was cloned in 2001 and since then a number of disease-causing mutations have been discovered across the entirety of this gene. Additionally, ten different splicing isoforms have been described for ADAMTS13 gene and a significant amount of genetic variations in this gene arises from the 1000 genome project (single nucleotide polymorphisms (SNPs)). Phylogenetic origins of ADAMTS13 are also discussed. Deficiency of this necessary protease activity due to autosomal recessive mutations of the ADAMTS13 gene are implicated in congenital thrombotic thrombocytopenic purpura, also called Upshaw-Schulman syndrome. Ongoing research focuses on the role of ADAMTS13 in other forms of thrombotic microangiopathy and the development of either a plasma-derived or recombinant form of ADAMTS13 for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moschcowitz E (2003) An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. 1925. Mt Sinai J Med 70:352–355

    PubMed  Google Scholar 

  2. Upshaw JD Jr (1978) Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med 298:1350–1352

    Article  PubMed  Google Scholar 

  3. Schulman I, Pierce M, Lukens A et al (1960) Studies on thrombopoiesis I A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood 16:943–957

    PubMed  CAS  Google Scholar 

  4. Moake JL, Rudy CK, Troll JH et al (1982) Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307:1432–1435

    Article  PubMed  CAS  Google Scholar 

  5. Furlan M, Robles R, Lammle B (1996) Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 87:4223–4234

    PubMed  CAS  Google Scholar 

  6. Tsai HM (1996) Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87:4235–4244

    PubMed  CAS  Google Scholar 

  7. Furlan M, Robles R, Solenthaler M et al (1997) Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 89:3097–3103

    PubMed  CAS  Google Scholar 

  8. Levy GG, Nichols WC, Lian EC et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494

    Article  PubMed  CAS  Google Scholar 

  9. Zheng X, Chung D, Takayama TK et al (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276:41059–41063

    Article  PubMed  CAS  Google Scholar 

  10. Tseng SC, Kimchi-Sarfaty C (2011) SNPs in ADAMTS13. Pharmacogenomics 12:1147–1160

    Article  PubMed  CAS  Google Scholar 

  11. Edwards NC, Hing ZA, Perry A et al (2012) Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 7:e38864

    Article  PubMed  CAS  Google Scholar 

  12. Merkin J, Russell C, Chen P et al (2012) Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338:1593–1599

    Article  PubMed  CAS  Google Scholar 

  13. Pal S, Gupta R, Davuluri RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136:283–294

    Article  PubMed  CAS  Google Scholar 

  14. Padgett RA (2012) New connections between splicing and human disease. Trends Genet 28:147–154

    Article  PubMed  CAS  Google Scholar 

  15. Shomron N, Hamasaki-Katagiri N, Hunt R et al (2010) A splice variant of ADAMTS13 is expressed in human hepatic stellate cells and cancerous tissues. Thromb Haemost 104:531–535

    Article  PubMed  CAS  Google Scholar 

  16. Le GC, Cormier-Daire V (2011) The ADAMTS(L) family and human genetic disorders. Hum Mol Genet 20:R163–R167

    Article  Google Scholar 

  17. Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284: 31493–31497

    Article  PubMed  CAS  Google Scholar 

  18. Hunt RC, Geetha S, Allen CE et al (2011) Detection of a secreted metalloprotease within the nuclei of liver cells. Mol Biosyst 7:2012–2018

    Article  PubMed  CAS  Google Scholar 

  19. Gardner MD, Chion CK, de Groot R et al (2009) A functional calcium-binding site in the metalloprotease domain of ADAMTS13. Blood 113:1149–1157

    Article  PubMed  CAS  Google Scholar 

  20. Gerhardt S, Hassall G, Hawtin P et al (2007) Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol 373:891–902

    Article  PubMed  CAS  Google Scholar 

  21. de Groot R, Bardhan A, Ramroop N et al (2009) Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 113:5609–5616

    PubMed  Google Scholar 

  22. Hofsteenge J, Huwiler KG, Macek B et al (2001) C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 276:6485–6498

    Article  PubMed  CAS  Google Scholar 

  23. Lopez-Dee Z, Pidcock K, Gutierrez LS (2011) Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011:296069

    Article  PubMed  Google Scholar 

  24. Soejima K, Nakagaki T (2005) Interplay between ADAMTS13 and von Willebrand factor in inherited and acquired thrombotic microangiopathies. Semin Hematol 42:56–62

    Article  PubMed  CAS  Google Scholar 

  25. Zheng X, Nishio K, Majerus EM et al (2003) Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem 278:30136–30141

    Article  PubMed  CAS  Google Scholar 

  26. Zhou Z, Yeh HC, Jing H et al (2011) Cysteine residues in CUB-1 domain are critical for ADAMTS13 secretion and stability. Thromb Haemost 105:21–30

    Article  PubMed  CAS  Google Scholar 

  27. Zhou W, Tsai HM (2009) N-Glycans of ADAMTS13 modulate its secretion and von Willebrand factor cleaving activity. Blood 113:929–935

    Article  PubMed  CAS  Google Scholar 

  28. Ricketts LM, Dlugosz M, Luther KB et al (2007) O-fucosylation is required for ADAMTS13 secretion. J Biol Chem 282:17014–17023

    Article  PubMed  CAS  Google Scholar 

  29. Hershko K, Simhadri VL, Blaisdell A et al (2012) Cyclosporin A impairs the secretion and activity of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeat). J Biol Chem 287:44361–44371

    Article  PubMed  CAS  Google Scholar 

  30. Uemura M, Tatsumi K, Matsumoto M et al (2005) Localization of ADAMTS13 to the stellate cells of human liver. Blood 106:922–924

    Article  PubMed  CAS  Google Scholar 

  31. Turner NA, Nolasco L, Ruggeri ZM et al (2009) Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114:5102–5111

    Article  PubMed  CAS  Google Scholar 

  32. Manea M, Kristoffersson A, Schneppenheim R et al (2007) Podocytes express ADAMTS13 in normal renal cortex and in patients with thrombotic thrombocytopenic purpura. Br J Haematol 138:651–662

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, Choi H, Bernardo A et al (2005) Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J Thromb Haemost 3:2536–2544

    Article  PubMed  CAS  Google Scholar 

  34. Feys HB, Anderson PJ, Vanhoorelbeke K et al (2009) Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost 7:2088–2095

    Article  PubMed  CAS  Google Scholar 

  35. Crawley JT, de Groot R, Xiang Y et al (2011) Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 118:3212–3221

    Article  PubMed  CAS  Google Scholar 

  36. Studt JD, Hovinga JA, Antoine G et al (2005) Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood 105:542–544

    Article  PubMed  CAS  Google Scholar 

  37. Bernardo A, Ball C, Nolasco L et al (2004) Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 104:100–106

    Article  PubMed  CAS  Google Scholar 

  38. Crawley JT, Lam JK, Rance JB et al (2005) Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood 105:1085–1093

    Article  PubMed  CAS  Google Scholar 

  39. Claus RA, Bockmeyer CL, Sossdorf M et al (2010) The balance between von-Willebrand factor and its cleaving protease ADAMTS13: biomarker in systemic inflammation and development of organ failure? Curr Mol Med 10:236–248

    Article  PubMed  CAS  Google Scholar 

  40. Tripodi A, Peyvandi F, Chantarangkul V et al (2008) Second international collaborative study evaluating performance characteristics of methods measuring the von Willebrand factor cleaving protease (ADAMTS-13). J Thromb Haemost 6:1534–1541

    Article  PubMed  CAS  Google Scholar 

  41. Feys HB, Canciani MT, Peyvandi F et al (2007) ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol 138:534–540

    Article  PubMed  CAS  Google Scholar 

  42. Mannucci PM, Canciani MT, Forza I et al (2001) Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 98:2730–2735

    Article  PubMed  CAS  Google Scholar 

  43. Schmugge M, Dunn MS, Amankwah KS et al (2004) The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost 2:228–233

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez-Luceros A, Farias CE, Amaral MM et al (2004) von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost 92:1320–1326

    PubMed  CAS  Google Scholar 

  45. Lattuada A, Rossi E, Calzarossa C et al (2003) Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica 88:1029–1034

    PubMed  CAS  Google Scholar 

  46. Chapman K, Seldon M, Richards R (2012) Thrombotic microangiopathies, thrombotic thrombocytopenic purpura, and ADAMTS-13. Semin Thromb Hemost 38:47–54

    Article  PubMed  CAS  Google Scholar 

  47. Veyradier A, Meyer D (2005) Thrombotic thrombocytopenic purpura and its diagnosis. J Thromb Haemost 3:2420–2427

    Article  PubMed  CAS  Google Scholar 

  48. Peyvandi F, Palla R, Lotta LA et al (2010) ADAMTS-13 assays in thrombotic thrombocytopenic purpura. J Thromb Haemost 8:631–640

    Article  PubMed  CAS  Google Scholar 

  49. Rieger M, Mannucci PM, Kremer Hovinga JA et al (2005) ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 106:1262–1267

    Article  PubMed  CAS  Google Scholar 

  50. Tsai HM (2009) Mechanisms of microvascular thrombosis in thrombotic thrombocytopenic purpura. Kidney Int Suppl (112): S11–S14

    Google Scholar 

  51. Tsai HM (2010) Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol 91:1–19

    Article  PubMed  Google Scholar 

  52. Bongers TN, de Bruijne EL, Dippel DW et al (2009) Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 207:250–254

    Article  PubMed  CAS  Google Scholar 

  53. Coppola R, Mari D, Lattuada A et al (2003) Von Willebrand factor in Italian centenarians. Haematologica 88:39–43

    PubMed  CAS  Google Scholar 

  54. Furlan M, Lammle B (1998) Deficiency of von Willebrand factor-cleaving protease in familial and acquired thrombotic thrombocytopenic purpura. Baillieres Clin Haematol 11:509–514

    Article  PubMed  CAS  Google Scholar 

  55. Som S, Deford CC, Kaiser ML et al (2012) Decreasing frequency of plasma exchange complications in patients treated for thrombotic thrombocytopenic purpura-hemolytic uremic syndrome, 1996 to 2011. Transfusion 52:2525–2532

    Article  PubMed  Google Scholar 

  56. George JN (2012) Corticosteroids and rituximab as adjunctive treatments for thrombotic thrombocytopenic purpura. Am J Hematol 87(Suppl 1):S88–S91

    Article  PubMed  CAS  Google Scholar 

  57. Loirat C, Girma JP, Desconclois C et al (2009) Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr Nephrol 24:19–29

    Article  PubMed  Google Scholar 

  58. Schiviz A, Wuersch K, Piskernik C et al (2012) A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood 119:6128–6135

    Article  PubMed  CAS  Google Scholar 

  59. Kokame K, Nobe Y, Kokubo Y et al (2005) FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol 129:93–100

    Article  PubMed  CAS  Google Scholar 

  60. Gerritsen HE, Turecek PL, Schwarz HP et al (1999) Assay of von Willebrand factor (vWF)-cleaving protease based on decreased collagen binding affinity of degraded vWF: a tool for the diagnosis of thrombotic thrombocytopenic purpura (TTP). Thromb Haemost 82: 1386–1389

    PubMed  CAS  Google Scholar 

  61. Bohm M, Vigh T, Scharrer I (2002) Evaluation and clinical application of a new method for measuring activity of von Willebrand factor-cleaving metalloprotease (ADAMTS13). Ann Hematol 81:430–435

    Article  PubMed  CAS  Google Scholar 

  62. Dong JF, Moake JL, Nolasco L et al (2002) ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100:4033–4039

    Article  PubMed  CAS  Google Scholar 

  63. Zhou W, Tsai HM (2004) An enzyme immunoassay of ADAMTS13 distinguishes patients with thrombotic thrombocytopenic purpura from normal individuals and carriers of ADAMTS13 mutations. Thromb Haemost 91:806–811

    PubMed  CAS  Google Scholar 

  64. Whitelock JL, Nolasco L, Bernardo A et al (2004) ADAMTS-13 activity in plasma is rapidly measured by a new ELISA method that uses recombinant VWF-A2 domain as substrate. J Thromb Haemost 2:485–491

    Article  PubMed  CAS  Google Scholar 

  65. Shenkman B, Budde U, Angerhaus D et al (2006) ADAMTS-13 regulates platelet adhesion under flow. A new method for differentiation between inherited and acquired thrombotic thrombocytopenic purpura. Thromb Haemost 96:610–616

    Google Scholar 

  66. Han Y, Xiao J, Falls E et al (2011) A shear-based assay for assessing plasma ADAMTS13 activity and inhibitors in patients with thrombotic thrombocytopenic purpura. Transfusion 51:1580–1591

    Article  PubMed  CAS  Google Scholar 

  67. Feys HB, Liu F, Dong N et al (2006) ADAMTS-13 plasma level determination uncovers antigen absence in acquired thrombotic thrombocytopenic purpura and ethnic differences. J Thromb Haemost 4:955–962

    Article  PubMed  CAS  Google Scholar 

  68. Ishizashi H, Yagi H, Matsumoto M et al (2007) Quantitative western blot analysis of plasma ADAMTS13 antigen in patients with Upshaw-Schulman syndrome. Thromb Res 120:381–386

    Article  PubMed  CAS  Google Scholar 

  69. Takaya H, Uemura M, Fujimura Y et al (2012) ADAMTS13 activity may predict the cumulative survival of patients with liver cirrhosis in comparison with the Child-Turcotte-Pugh score and the model for end-stage liver disease score. Hepatol Res 42:459–472

    Article  PubMed  Google Scholar 

  70. Shen L, Lu G, Dong N et al (2012) Von Willebrand factor, ADAMTS13 activity, TNF-alpha and their relationships in patients with chronic kidney disease. Exp Ther Med 3:530–534

    PubMed  CAS  Google Scholar 

  71. Mannucci PM, Vanoli M, Forza I et al (2003) Von Willebrand factor cleaving protease (ADAMTS-13) in 123 patients with connective tissue diseases (systemic lupus erythematosus and systemic sclerosis). Haematologica 88:914–918

    PubMed  CAS  Google Scholar 

  72. Djamiatun K, van der Ven AJ, de Groot PG et al (2012) Severe dengue is associated with consumption of von Willebrand factor and its cleaving enzyme ADAMTS-13. PLoS Negl Trop Dis 6:e1628

    Article  PubMed  CAS  Google Scholar 

  73. Bianchi V, Robles R, Alberio L et al (2002) Von Willebrand factor-cleaving protease (ADAMTS13) in thrombocytopenic disorders: a severely deficient activity is specific for thrombotic thrombocytopenic purpura. Blood 100:710–713

    Article  PubMed  CAS  Google Scholar 

  74. Mazetto BM, Orsi FL, Barnabe A et al (2012) Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb Res 130:889–893

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chava Kimchi-Sarfaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saini, S., Schiller, T., Wu, A., Kimchi-Sarfaty, C. (2013). ADAMTS13: The von Willebrand Factor Cleaving Protease and Its Role in Thrombotic Thrombocytopenic Purpura. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_15

Download citation

Publish with us

Policies and ethics