Skip to main content

Role of Proteases During Intra-erythrocytic Developmental Cycle of Human Malaria Parasite Plasmodium falciparum

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

  • 1089 Accesses

Abstract

Malaria remains a major parasitic disease in the tropical and sub-tropical countries mainly due to dramatic increase in parasite lines resistant to commonly used anti-malarials. Characterization of novel metabolic pathways in the parasites and understanding their functional role is a prerequisite to design new anti-malarial strategies. Parasite proteases play key role in growth and differentiation of all the developmental stages across the parasite life cycle and present the most promising targets to develop new drugs against malaria. In Plasmodium falciparum genome database a total of 123 proteases are identified; these proteases belong to five different clans: Cysteine, Aspartic, Serine, Metallo-, and Threonine. Some of the most studied parasite proteases are those that are functional in the asexual blood stage cycle. Starting with the processing of key parasite ligand in merozoite, the invasive form of blood stage parasite, degradation of host hemoglobin in food-vacuole, regulation of levels of key metabolic pathways in cytosol and cellular organelles, degradation of misfolded and unused proteins, and rupture of host membrane for egress of daughter merozoites is mediated by these proteases. Here we discuss roles of some of the parasite proteases involved in various steps of the parasite intra-erythrocytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snow RW, Guerra CA, Noor AM et al (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    PubMed  CAS  Google Scholar 

  2. Teixeira C, Gomes JR, Gomes P (2011) Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem 18:1555–1572

    PubMed  CAS  Google Scholar 

  3. Tschan S, Mordmuller B, Kun JF (2011) Threonine peptidases as drug targets against malaria. Expert Opin Ther Targets 15:365–378

    PubMed  CAS  Google Scholar 

  4. McKerrow JH, Rosenthal PJ, Swenerton R et al (2008) Development of protease inhibitors for protozoan infections. Curr Opin Infect Dis 21:668–672

    PubMed  CAS  Google Scholar 

  5. Wu Y, Wang X, Liu X et al (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616

    PubMed  CAS  Google Scholar 

  6. Cai H, Gu J, Wang Y (2010) Core genome components and lineage specific expansions in malaria parasites plasmodium. BMC Genomics 11(Suppl 3):S13

    PubMed  CAS  Google Scholar 

  7. Rosenthal PJ (2011) Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol 712:30–48

    PubMed  CAS  Google Scholar 

  8. Brady RL, Cameron A (2004) Structure-based approaches to the development of novel anti-malarials. Curr Drug Targets 5:137–149

    PubMed  CAS  Google Scholar 

  9. Werbovetz KA (2000) Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr Med Chem 7:835–860

    PubMed  CAS  Google Scholar 

  10. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766

    PubMed  CAS  Google Scholar 

  11. Blackman MJ (2000) Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr Drug Targets 1:59–83

    PubMed  CAS  Google Scholar 

  12. Singh S, Alam MM, Pal-Bhowmick I et al (2010) Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6:e1000746

    PubMed  Google Scholar 

  13. Alexander DL, Mital J, Ward GE et al (2005) Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1:e17

    PubMed  Google Scholar 

  14. Besteiro S, Dubremetz JF, Lebrun M (2011) The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 13:797–805

    PubMed  CAS  Google Scholar 

  15. Holder AA (1988) The precursor to major merozoite surface antigens: structure and role in immunity. Prog Allergy 41:72–97

    PubMed  CAS  Google Scholar 

  16. Stafford WH, Blackman MJ, Harris A et al (1994) N-terminal amino acid sequence of the Plasmodium falciparum merozoite surface protein-1 polypeptides. Mol Biochem Parasitol 66:157–160

    PubMed  CAS  Google Scholar 

  17. Blackman MJ, Holder AA (1992) Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem Parasitol 50:307–315

    PubMed  CAS  Google Scholar 

  18. Pachebat JA, Ling IT, Grainger M et al (2001) The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Mol Biochem Parasitol 117:83–89

    PubMed  CAS  Google Scholar 

  19. Pachebat JA, Kadekoppala M, Grainger M et al (2007) Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes. Mol Biochem Parasitol 151:59–69

    PubMed  CAS  Google Scholar 

  20. Dutta S, Haynes JD, Barbosa A et al (2005) Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. Infect Immun 73:2116–2122

    PubMed  CAS  Google Scholar 

  21. Treeck M, Zacherl S, Herrmann S et al (2009) Functional analysis of the leading malaria vaccine candidate AMA-1 reveals an essential role for the cytoplasmic domain in the invasion process. PLoS Pathog 5:e1000322

    PubMed  Google Scholar 

  22. Howell SA, Withers-Martinez C, Kocken CH et al (2001) Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J Biol Chem 276: 31311–31320

    PubMed  CAS  Google Scholar 

  23. Howell S, Well I, Fleck S et al (2003) A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J Biol Chem 278: 23890–23898

    PubMed  CAS  Google Scholar 

  24. Barale JC, Blisnick T, Fujioka H et al (1999) Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1-42 maturase. Proc Natl Acad Sci USA 96:6445–6450

    PubMed  CAS  Google Scholar 

  25. Hackett F, Sajid M, Withers-Martinez C et al (1999) PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol Biochem Parasitol 103:183–195

    PubMed  CAS  Google Scholar 

  26. Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    PubMed  CAS  Google Scholar 

  27. Blackman MJ, Fujioka H, Stafford WH et al (1998) A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J Biol Chem 273:23398–23409

    PubMed  CAS  Google Scholar 

  28. Agarwal S, Singh MK, Garg S et al (2012) Ca(2+) -mediated exocytosis of subtilisin-like protease 1: a key step in egress of Plasmodium falciparum merozoites. Cell Microbiol, DOI: 10.1111/cmi.12086

  29. Yeoh S, O’Donnell RA, Koussis K et al (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–1083

    PubMed  CAS  Google Scholar 

  30. Koussis K, Withers-Martinez C, Yeoh S et al (2009) A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J 28:725–735

    PubMed  CAS  Google Scholar 

  31. Silmon de Monerri NC, Flynn HR, Campos MG et al (2011) Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun 79:1086–1097

    PubMed  CAS  Google Scholar 

  32. Arastu-Kapur S, Ponder EL, Fonovic UP et al (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4:203–213

    PubMed  CAS  Google Scholar 

  33. Blackman MJ (2008) Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol 10:1925–1934

    PubMed  CAS  Google Scholar 

  34. Harris PK, Yeoh S, Dluzewski AR et al (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1:241–251

    PubMed  CAS  Google Scholar 

  35. Green JL, Hinds L, Grainger M et al (2006) Plasmodium thrombospondin related apical merozoite protein (PTRAMP) is shed from the surface of merozoites by PfSUB2 upon invasion of erythrocytes. Mol Biochem Parasitol 150:114–117

    PubMed  CAS  Google Scholar 

  36. Uzureau P, Barale JC, Janse CJ et al (2004) Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events. Cell Microbiol 6:65–78

    PubMed  CAS  Google Scholar 

  37. Alam A, Bhatnagar RK, Chauhan VS (2012) Expression and characterization of catalytic domain of Plasmodium falciparum subtilisin-like protease 3. Mol Biochem Parasitol 183:84–89

    PubMed  CAS  Google Scholar 

  38. Miller SK, Good RT, Drew DR et al (2002) A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J Biol Chem 277:47524–47532

    PubMed  CAS  Google Scholar 

  39. McCoubrie JE, Miller SK, Sargeant T et al (2007) Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 75:5565–5574

    PubMed  CAS  Google Scholar 

  40. Chulay JD, Lyon JA, Haynes JD et al (1987) Monoclonal antibody characterization of Plasmodium falciparum antigens in immune complexes formed when schizonts rupture in the presence of immune serum. J Immunol 139:2768–2774

    PubMed  CAS  Google Scholar 

  41. Higgins DG, McConnell DJ, Sharp PM (1989) Malarial proteinase? Nature 340:604

    PubMed  CAS  Google Scholar 

  42. Hodder AN, Drew DR, Epa VC et al (2003) Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 278:48169–48177

    PubMed  CAS  Google Scholar 

  43. Pang XL, Mitamura T, Horii T (1999) Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect Immun 67:1821–1827

    PubMed  CAS  Google Scholar 

  44. Li J, Mitamura T, Fox BA et al (2002) Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol Int 51:343–352

    PubMed  CAS  Google Scholar 

  45. Delplace P, Bhatia A, Cagnard M et al (1988) Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites. Biol Cell 64:215–221

    PubMed  CAS  Google Scholar 

  46. Ruecker A, Shea M, Hackett F et al (2012) Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 287:37949–37963

    PubMed  CAS  Google Scholar 

  47. Nwagwu M, Haynes JD, Orlandi PA et al (1992) Plasmodium falciparum: chymotryptic-like proteolysis associated with a 101-kDa acidic-basic repeat antigen. Exp Parasitol 75:399–414

    PubMed  CAS  Google Scholar 

  48. Kushwaha A, Rao PP, Duttu VS et al (2000) Expression and characterisation of Plasmodium falciparum acidic basic repeat antigen expressed in Escherichia coli. Mol Biochem Parasitol 106:213–224

    PubMed  CAS  Google Scholar 

  49. Lopera TM, Restrepo M, Blair S et al (1998) Humoral immune response to the anti-malaria vaccine SPf66 in the Colombian Atrato River region. Mem Inst Oswaldo Cruz 93:495–500

    PubMed  CAS  Google Scholar 

  50. Curtidor H, Urquiza M, Suarez J et al (2001) Plasmodium falciparum acid basic repeat antigen (ABRA) peptides: erythrocyte binding and biological activity. Vaccine 19:4496–4504

    PubMed  CAS  Google Scholar 

  51. Vargas-Serrato E, Barnwell JW, Ingravallo P et al (2002) Merozoite surface protein-9 of Plasmodium vivax and related simian malaria parasites is orthologous to p101/ABRA of P. falciparum. Mol Biochem Parasitol 120:41–52

    PubMed  CAS  Google Scholar 

  52. Mills KE, Pearce JA, Crabb BS et al (2002) Truncation of merozoite surface protein 3 disrupts its trafficking and that of acidic-basic repeat protein to the surface of Plasmodium falciparum merozoites. Mol Microbiol 43:1401–1411

    PubMed  CAS  Google Scholar 

  53. Zhou XW, Blackman MJ, Howell SA et al (2004) Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol Cell Proteomics 3:565–576

    PubMed  CAS  Google Scholar 

  54. Howell SA, Hackett F, Jongco AM et al (2005) Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol Microbiol 57:1342–1356

    PubMed  CAS  Google Scholar 

  55. Baker RP, Wijetilaka R, Urban S (2006) Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2:e113

    PubMed  Google Scholar 

  56. O’Donnell RA, Hackett F, Howell SA et al (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174:1023–1033

    PubMed  Google Scholar 

  57. Vera IM, Beatty WL, Sinnis P et al (2011) Plasmodium protease ROM1 is important for proper formation of the parasitophorous vacuole. PLoS Pathog 7:e1002197

    PubMed  CAS  Google Scholar 

  58. Srinivasan P, Coppens I, Jacobs-Lorena M (2009) Distinct roles of Plasmodium rhomboid 1 in parasite development and malaria pathogenesis. PLoS Pathog 5:e1000262

    PubMed  Google Scholar 

  59. Rosenthal PJ, Sijwali PS, Singh A et al (2002) Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des 8:1659–1672

    PubMed  CAS  Google Scholar 

  60. Greenbaum DC, Baruch A, Grainger M et al (2002) A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298:2002–2006

    PubMed  CAS  Google Scholar 

  61. Sijwali PS, Kato K, Seydel KB et al (2004) Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA 101:8721–8726

    PubMed  CAS  Google Scholar 

  62. Banyal HS, Misra GC, Gupta CM et al (1981) Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections. J Parasitol 67:623–626

    PubMed  CAS  Google Scholar 

  63. Wickham ME, Culvenor JG, Cowman AF (2003) Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J Biol Chem 278:37658–37663

    PubMed  CAS  Google Scholar 

  64. Le Bonniec S, Deregnaucourt C, Redeker V et al (1999) Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J Biol Chem 274:14218–14223

    PubMed  Google Scholar 

  65. Dhawan S, Dua M, Chishti AH et al (2003) Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J Biol Chem 278:30180–30186

    PubMed  CAS  Google Scholar 

  66. Dasaradhi PV, Korde R, Thompson JK et al (2007) Food vacuole targeting and trafficking of falcipain-2, an important cysteine protease of human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 156:12–23

    PubMed  CAS  Google Scholar 

  67. Aoki S, Li J, Itagaki S et al (2002) Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of Plasmodium falciparum, and the acquired antibody titers correlate with serum inhibition of the parasite growth. J Biol Chem 277:47533–47540

    PubMed  CAS  Google Scholar 

  68. Dua M, Raphael P, Sijwali PS et al (2001) Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol 116:95–99

    PubMed  CAS  Google Scholar 

  69. Hanspal M, Dua M, Takakuwa Y et al (2002) Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100:1048–1054

    PubMed  CAS  Google Scholar 

  70. Dasaradhi PV, Mohmmed A, Kumar A et al (2005) A role of falcipain-2, principal cysteine proteases of Plasmodium falciparum in merozoite egression. Biochem Biophys Res Commun 336:1062–1068

    PubMed  CAS  Google Scholar 

  71. Omara-Opyene AL, Moura PA, Sulsona CR et al (2004) Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J Biol Chem 279:54088–54096

    PubMed  CAS  Google Scholar 

  72. Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389

    PubMed  CAS  Google Scholar 

  73. Liu J, Gluzman IY, Drew ME et al (2005) The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 280:1432–1437

    PubMed  CAS  Google Scholar 

  74. Sijwali PS, Koo J, Singh N et al (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 150:96–106

    PubMed  CAS  Google Scholar 

  75. Chandramohanadas R, Davis PH, Beiting DP et al (2009) Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324:794–797

    PubMed  CAS  Google Scholar 

  76. Singh N, Sijwali PS, Pandey KC et al (2006) Plasmodium falciparum: biochemical characterization of the cysteine protease falcipain-2′. Exp Parasitol 112:187–192

    PubMed  CAS  Google Scholar 

  77. Chugh M, Sundararaman V, Kumar S et al (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci USA 110:5392–5397

    PubMed  CAS  Google Scholar 

  78. Murata CE, Goldberg DE (2003) Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 278:38022–38028

    PubMed  CAS  Google Scholar 

  79. Francis SE, Banerjee R, Goldberg DE (1997) Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J Biol Chem 272:14961–14968

    PubMed  CAS  Google Scholar 

  80. Ponpuak M, Klemba M, Park M et al (2007) A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol 63:314–334

    PubMed  CAS  Google Scholar 

  81. Francis SE, Gluzman IY, Oksman A et al (1994) Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 13:306–317

    PubMed  CAS  Google Scholar 

  82. Banerjee R, Liu J, Beatty W et al (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 99(2):990–995

    PubMed  CAS  Google Scholar 

  83. Silva AM, Lee AY, Gulnik SV et al (1996) Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci USA 93:10034–10039

    PubMed  CAS  Google Scholar 

  84. Moon RP, Tyas L, Certa U et al (1997) Expression and characterisation of plasmepsin I from Plasmodium falciparum. Eur J Biochem 244:552–560

    PubMed  CAS  Google Scholar 

  85. Haque TS, Skillman AG, Lee CE et al (1999) Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem 42:1428–1440

    PubMed  CAS  Google Scholar 

  86. Nezami A, Luque I, Kimura T et al (2002) Identification and characterization of allophenylnorstatine-based inhibitors of plasmepsin II, an antimalarial target. Biochemistry 41:2273–2280

    PubMed  CAS  Google Scholar 

  87. Skinner-Adams TS, McCarthy JS, Gardiner DL et al (2004) Antiretrovirals as antimalarial agents. J Infect Dis 190:1998–2000

    PubMed  CAS  Google Scholar 

  88. Parikh S, Gut J, Istvan E et al (2005) Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 49:2983–2985

    PubMed  CAS  Google Scholar 

  89. Savarino A, Cauda R, Cassone A (2005) Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors. J Infect Dis 191:1381–1382, author reply 1382–1383

    PubMed  CAS  Google Scholar 

  90. Shenai BR, Sijwali PS, Singh A et al (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275:29000–29010

    PubMed  CAS  Google Scholar 

  91. Dahl EL, Rosenthal PJ (2005) Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 139:205–212

    PubMed  CAS  Google Scholar 

  92. Mohmmed A, Dasaradhi PV, Bhatnagar RK et al (2003) In vivo gene silencing in Plasmodium berghei - a mouse malaria model. Biochem Biophys Res Commun 309:506–511

    PubMed  CAS  Google Scholar 

  93. Powers JC, Asgian JL, Ekici OD et al (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750

    PubMed  CAS  Google Scholar 

  94. Rosenthal PJ, Wollish WS, Palmer JT et al (1991) Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest 88:1467–1472

    PubMed  CAS  Google Scholar 

  95. Gibbons P, Verissimo E, Araujo NC et al (2010) Endoperoxide carbonyl falcipain 2/3 inhibitor hybrids: toward combination chemotherapy of malaria through a single chemical entity. J Med Chem 53:8202–8206

    PubMed  CAS  Google Scholar 

  96. Liu Y, Lu WQ, Cui KQ et al (2012) Synthesis and biological activities of novel artemisinin derivatives as cysteine protease falcipain-2 inhibitors. Arch Pharm Res 35:1525–1531

    PubMed  CAS  Google Scholar 

  97. Mane UR, Gupta RC, Nadkarni SS et al (2013) Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opin Ther Pat 23:165–187

    PubMed  CAS  Google Scholar 

  98. Rizzi L, Sundararaman S, Cendic K et al (2011) Design and synthesis of protein-protein interaction mimics as Plasmodium falciparum cysteine protease, falcipain-2 inhibitors. Eur J Med Chem 46:2083–2090

    PubMed  CAS  Google Scholar 

  99. Curley GP, O’Donovan SM, McNally J et al (1994) Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei. J Eukaryot Microbiol 41:119–123

    PubMed  CAS  Google Scholar 

  100. Gavigan CS, Dalton JP, Bell A (2001) The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 117:37–48

    PubMed  CAS  Google Scholar 

  101. Stack CM, Lowther J, Cunningham E et al (2007) Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem 282:2069–2080

    PubMed  CAS  Google Scholar 

  102. Florent I, Derhy Z, Allary M et al (1998) A Plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Mol Biochem Parasitol 97:149–160

    PubMed  CAS  Google Scholar 

  103. Allary M, Schrevel J, Florent I (2002) Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology 125:1–10

    PubMed  CAS  Google Scholar 

  104. Dalal S, Klemba M (2007) Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem 282:35978–35987

    PubMed  CAS  Google Scholar 

  105. Teuscher F, Lowther J, Skinner-Adams TS et al (2007) The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem 282:30817–30826

    PubMed  CAS  Google Scholar 

  106. Poreba M, McGowan S, Skinner-Adams TS et al (2012) Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One 7:e31938

    PubMed  CAS  Google Scholar 

  107. Dalal S, Ragheb DR, Klemba M (2012) Engagement of the S1, S1′ and S2′ subsites drives efficient catalysis of peptide bond hydrolysis by the M1-family aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 183:70–77

    PubMed  CAS  Google Scholar 

  108. Jones PM, Robinson MW, Dalton JP et al (2011) The Plasmodium falciparum malaria M1 alanyl aminopeptidase (PfA-M1): insights of catalytic mechanism and function from MD simulations. PLoS One 6:e28589

    PubMed  CAS  Google Scholar 

  109. Skinner-Adams TS, Lowther J, Teuscher F et al (2007) Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem 50:6024–6031

    PubMed  CAS  Google Scholar 

  110. Harbut MB, Velmourougane G, Dalal S et al (2011) Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci USA 108:E526–E534

    PubMed  CAS  Google Scholar 

  111. Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  112. Goodman CD, Su V, McFadden GI (2007) The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 152:181–191

    PubMed  CAS  Google Scholar 

  113. Schlitzer M (2007) Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. Chem Med Chem 2:944–986

    PubMed  CAS  Google Scholar 

  114. Schlitzer M (2006) Selective enzyme inhibitor instead of an “iron-triggered cluster bomb”. Pharm Unserer Zeit 35:8–9

    PubMed  Google Scholar 

  115. Dahl EL, Rosenthal PJ (2008) Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24:279–284

    PubMed  CAS  Google Scholar 

  116. Tschan S, Kreidenweiss A, Stierhof YD et al (2010) Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum. Int J Parasitol 40:1517–1523

    PubMed  CAS  Google Scholar 

  117. Ramasamy G, Gupta D, Mohmmed A et al (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152:139–148

    PubMed  CAS  Google Scholar 

  118. Sousa MC, Trame CB, Tsuruta H et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103:633–643

    PubMed  CAS  Google Scholar 

  119. Rathore S, Jain S, Sinha D et al (2011) Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death. Cell Death Dis 2:e231

    PubMed  CAS  Google Scholar 

  120. Li Z, Lindsay ME, Motyka SA et al (2008) Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 4:e1000048

    PubMed  Google Scholar 

  121. Jain S, Rathore S, Asad M et al (2013) The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell Microbiol, DOI: 10.1111/cmi.12142

  122. Ralph SA, van Dooren GG, Waller RF et al (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216

    PubMed  CAS  Google Scholar 

  123. McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272:2046–2049

    PubMed  CAS  Google Scholar 

  124. Lin Q, Katakura K, Suzuki M (2002) Inhibition of mitochondrial and plastid activity of Plasmodium falciparum by minocycline. FEBS Lett 515:71–74

    PubMed  CAS  Google Scholar 

  125. Williamson DH, Preiser PR, Moore PW et al (2002) The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol Microbiol 45:533–542

    PubMed  CAS  Google Scholar 

  126. Chaubey S, Kumar A, Singh D et al (2005) The apicoplast of Plasmodium falciparum is translationally active. Mol Microbiol 56:81–89

    PubMed  CAS  Google Scholar 

  127. Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 9:e1001138

    PubMed  CAS  Google Scholar 

  128. van Dooren GG, Su V, D’Ombrain MC et al (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277:23612–23619

    PubMed  Google Scholar 

  129. El Bakkouri M, Rathore S, Calmettes C et al (2013) Structural insights into the inactive subunit of the apicoplast-localized caseinolytic protease complex of Plasmodium falciparum. J Biol Chem 288:1022–1031

    PubMed  Google Scholar 

  130. Rathore S, Sinha D, Asad M et al (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77:873–890

    Google Scholar 

  131. Gille C, Goede A, Schloetelburg C et al (2003) A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 326:1437–1448

    PubMed  CAS  Google Scholar 

  132. Mordmuller B, Fendel R, Kreidenweiss A et al (2006) Plasmodia express two threonine-peptidase complexes during asexual development. Mol Biochem Parasitol 148:79–85

    PubMed  Google Scholar 

  133. Aminake MN, Mahajan A, Kumar V et al (2012) Synthesis and evaluation of hybrid drugs for a potential HIV/AIDS-malaria combination therapy. Bioorg Med Chem 20:5277–5289

    PubMed  CAS  Google Scholar 

  134. Gantt SM, Myung JM, Briones MR et al (1998) Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 42:2731–2738

    PubMed  CAS  Google Scholar 

  135. Reynolds JM, El Bissati K, Brandenburg J et al (2007) Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin Pharmacol 7:13

    PubMed  Google Scholar 

  136. Kreidenweiss A, Kremsner PG, Mordmuller B (2008) Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J 7:187

    PubMed  Google Scholar 

  137. Prudhomme J, McDaniel E, Ponts N et al (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3:e2335

    PubMed  Google Scholar 

  138. Frickel EM, Quesada V, Muething L et al (2007) Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cell Microbiol 9:1601–1610

    PubMed  CAS  Google Scholar 

  139. Ponder EL, Albrow VE, Leader BA et al (2011) Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors. Chem Biol 18:711–721

    PubMed  CAS  Google Scholar 

  140. Ponder EL, Bogyo M (2007) Ubiquitin-like modifiers and their deconjugating enzymes in medically important parasitic protozoa. Eukaryot Cell 6:1943–1952

    PubMed  CAS  Google Scholar 

  141. Ponts N, Yang J, Chung DW et al (2008) Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One 3:e2386

    PubMed  Google Scholar 

  142. Spork S, Hiss JA, Mandel K et al (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145

    PubMed  CAS  Google Scholar 

  143. Artavanis-Tsakonas K, Misaghi S, Comeaux CA et al (2006) Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol Microbiol 61:1187–1195

    PubMed  CAS  Google Scholar 

  144. Le Roch KG, Johnson JR, Florens L et al (2004) Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 14:2308–2318

    PubMed  Google Scholar 

  145. Artavanis-Tsakonas K, Weihofen WA, Antos JM et al (2010) Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. J Biol Chem 285:6857–6866

    PubMed  CAS  Google Scholar 

  146. Issar N, Roux E, Mattei D et al (2008) Identification of a novel post-translational modification in Plasmodium falciparum: protein sumoylation in different cellular compartments. Cell Microbiol 10:1999–2011

    PubMed  CAS  Google Scholar 

  147. Sharma S, Pradhan A, Chauhan VS et al (2005) Isolation and characterization of type I signal peptidase of different malaria parasites. J Biomed Biotechnol 2005:301–309

    PubMed  Google Scholar 

  148. Tuteja R, Pradhan A, Sharma S (2008) Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth. Mol Biochem Parasitol 157:137–147

    PubMed  CAS  Google Scholar 

  149. McPherson RA, Donald DR, Sawyer WH et al (1993) Proteolytic digestion of band 3 at an external site alters the erythrocyte membrane organisation and may facilitate malarial invasion. Mol Biochem Parasitol 62:233–242

    PubMed  CAS  Google Scholar 

  150. Li X, Chen H, Oh SS et al (2008) A Presenilin-like protease associated with Plasmodium falciparum micronemes is involved in erythrocyte invasion. Mol Biochem Parasitol 158:22–31

    PubMed  CAS  Google Scholar 

  151. Li X, Chen H, Bahamontes-Rosa N et al (2009) Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun 380:454–459

    PubMed  CAS  Google Scholar 

  152. Marapana DS, Wilson DW, Zuccala ES et al (2012) Malaria parasite signal peptide peptidase is an ER-resident protease required for growth but not for invasion. Traffic 13:1457–1465

    PubMed  CAS  Google Scholar 

  153. Chang HH, Falick AM, Carlton PM et al (2008) N-terminal processing of proteins exported by malaria parasites. Mol Biochem Parasitol 160:107–115

    PubMed  CAS  Google Scholar 

  154. Boddey JA, Moritz RL, Simpson RJ et al (2009) Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10:285–299

    PubMed  CAS  Google Scholar 

  155. Boddey JA, Hodder AN, Gunther S et al (2010) An aspartyl protease directs malaria effector proteins to the host cell. Nature 463:627–631

    PubMed  CAS  Google Scholar 

  156. Klemba M, Gluzman I, Goldberg DE (2004) A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem 279:43000–43007

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Malaria Group at ICGEB is supported by Program Support Grant from Department of Biotechnology, Govt. of India, and research grant to AM under Indo-Swiss Joint Research Programme from Department of Science & Technology, Govt. of India. AM is a recipient of National Bioscience Award for Career Development from Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Mohmmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rathore, S., Jain, S., Asad, M., Datta, G., Malhotra, P., Mohmmed, A. (2013). Role of Proteases During Intra-erythrocytic Developmental Cycle of Human Malaria Parasite Plasmodium falciparum . In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_13

Download citation

Publish with us

Policies and ethics