Application of Rheology to Fluid Food Handling and Processing

Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Flow models used to describe isothermal and non-isothermal shear-dependent flows are described. The role of rheological behavior in the handling and processing of foods is discussed, including pressure drop due to friction in tube flow and energy required for pumping. Thermorheological models and estimation of flow sterilizer length and loss of nutrients are covered.

Keywords

Typical shear rates of foods in practice Velocity profiles in tubes Holding tube length The generalized Reynolds number Friction in tube flow Energy to pump a liquid food Non-isothermal laminar flow tube sterilization 

References

  1. Anantheswaran, R. C. and Rao, M. A. 1985a. Heat transfer to model Newtonian liquid foods in cans during end-over-end agitation. J. Food Eng. 4: 1–19.CrossRefGoogle Scholar
  2. Anantheswaran, R. C. and Rao, M. A. 1985b. Heat transfer to non-Newtonian liquid foods in cans during end-over-end rotation. J. Food Eng. 4: 21–35.CrossRefGoogle Scholar
  3. Ball, C. 0. 1923. Thermal process time for canned food. Bull. 37. National Research Council, Washington, DC.Google Scholar
  4. Ball, C. O. 1927. Theory and practice in processing. The Canner 64: 27–32.Google Scholar
  5. Ball, C. O. 1928. Mathematical solution of problems on thermal processing of canned food. Univ. of Calif (Berkeley) Publications in Public Health. 1(2): 15–245.Google Scholar
  6. Ball, C. O. and Olson, F. C. W. 1957. Sterilization in Food Technology, 1st ed., McGraw Hill Book Co., New York.Google Scholar
  7. Bird, R. B., Stewart, W. E. and Lightfoot, E.N. 1960. Transport Phenomena, John Wiley & Sons, New York.Google Scholar
  8. Brodkey, R. S. 1967. The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA.Google Scholar
  9. Charm, S. E. 1971. Fundamentals of Food Engineering, 2nd ed., AVI Publishing Co., Westport, CT.Google Scholar
  10. Christiansen, E. B. and Craig, S. E. 1962. Heat transfer to pseudoplastic fluids in laminar flow. AIChE J. 8: 154–160.CrossRefGoogle Scholar
  11. Danckwerts, P. V. 1953. Continuous flow systems. Chem. Eng. Sci. 2: 1–13.CrossRefGoogle Scholar
  12. Dodge, D. W. and Metzner, A. B. 1959. Turbulent flow of non-Newtonian systems. AIChE J. 5: 189–204.CrossRefGoogle Scholar
  13. Dolan, K. D. and Steffe, J. F. 1990. Modeling rheological behavior of gelatinizing starch solutions using mixer viscometry data. J. Texture Stud. 21: 265–294.CrossRefGoogle Scholar
  14. Dolan, K. D., Steffe, J. F. and Morgan, R. G. 1989. Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng. 11: 79–101.CrossRefGoogle Scholar
  15. Feliciotti, E. and Esselen, W.B. 1957. Thermal destruction rates of thiamine in pureed meats and vegetables. Food Technol. 11:77–84.Google Scholar
  16. Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley, New York.Google Scholar
  17. Foust, A. S., Wenxel, L. A., Clump, C. W., Maus, L. and Andersen, B. 1980. Principles of Unit Operations, 2nd ed., John Wiley, New York.Google Scholar
  18. Garcia, E. J. and Steffe, J. F. 1987. Comparison of friction factor equations for non-Newtonian fluids in pipe flow. J. Food Process Eng. 9: 93–120.CrossRefGoogle Scholar
  19. Graetz, L. 1883. Uber die Warmeleitungsfahigkeit von Flussigkeiten (On the heat transfer in liquids) Annalen der Physik und Chemie, part. 1,18: 79–94.Google Scholar
  20. Hanks, R. W. 1978. Low Reynolds number turbulent pipeline flow of pseudohomogeneous slurries, in Proceedings of the Fifth International Conference on the Hydraulic Transport of Solids in Pipes Hydro- transport. May 8–11. Paper C2, p. C2–23 to C2–34, Hanover, West Germany, cited in Garcia and Steffe 1987.Google Scholar
  21. Hanks, R. W. and Ricks, B.L. 1974. Laminar-turbulent transition in flow of pseudoplastic fluids with yield stress. J. Hydronautics 8: 163–166.CrossRefGoogle Scholar
  22. Harper, J. C. and El-Sahrigi, A. F. 1965. Viscometric behavior of tomato concentrates. J. Food Sci. 30: 470–476.CrossRefGoogle Scholar
  23. Heppell, N. J. 1985. Comparison of the residence time distributions of water and milk in an experimental UHT sterilizer. J. Food Eng. 4: 71–84.CrossRefGoogle Scholar
  24. Himmelblau, D. M. and Bischoff, K. B. 1968. Process Analysis and Simulation, John Wiley and Sons, New York.Google Scholar
  25. Kalkschmidt-J. 1977. Ruehr- und Mischeinrichtungen—unter besonderer Beruecksichtigung der Milchwirtschaft. [Stirring and mixing equipment for the dairy industry.]. Fette,-Seifen,-Anstrichmittel 77(9): 357–359. Food Science Technol. Abstract 76-04–P0664.Google Scholar
  26. Kokini, J. L., Lai, L.-S., and Chedid, L. L. 1992. Effect of starch structure on starch rheological properties. Food Technol. 46 (6) 124–139.Google Scholar
  27. Kubota, K., Hosakawa, Y., Suzuki, K., and Hosaka, H. 1979. Studies on the gelatinization rate of rice and potato starches. J. Food Sei. 44: 1394–1397.CrossRefGoogle Scholar
  28. Kumar, A. and Bhattacharya, M. 1991. Numerical analysis of aseptic processing of a non-Newtonian liquid food in a tubular heat exchanger. Chem. Eng. Comm. 103: 27–51.CrossRefGoogle Scholar
  29. Kwant, P. B., Fierens, R. H. E., and Van Der Lee, A. 1973. Non-isothermal laminar pipe flow—I. Theoretical. Chem. Eng. Sci. 28: 1303–1316.CrossRefGoogle Scholar
  30. Ladeinde, F. 1988. Studies on thermal convection in self-gravitating and rotating horizontal cylinders in a vertical external gravity field. Ph.D. dissertation, Cornell University, Ithaca, New York.Google Scholar
  31. Levenspiel, O. 1972. Chemical Reaction Engineering, 2nd ed. John Wiley and Sons, New York.Google Scholar
  32. Liao, H.-J. 1998. Simulation of continuous sterilization of fluid food products: the role of thermorheological behavior of starch dispersion and process. Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  33. Liao, H.-J., Tattiyakul, J., and Rao, M. A. 1999. Superposition of complex viscosity curves during gelatinization of starch dispersion and dough. J. Food Process Eng. 22: 215–234.CrossRefGoogle Scholar
  34. Liao, H.-J., Rao, M. A., and Datta, A. K. 2000. Role of thermorheological behavior in simulation of continuous sterilization of a starch dispersion. IChemE Trans. Part C—Food and Bioproducts Process. 78(C1): 48–56.CrossRefGoogle Scholar
  35. Lin, S. H. 1979. Residence time distribution in continuous sterilization process. Process Biochem. 14(7): 23–25.Google Scholar
  36. Lopes da Silva, J. A., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.CrossRefGoogle Scholar
  37. Lopez, A. 1987. A Complete Courses in Canning and Related Processes: Book II—Packaging-Aseptic Processing Ingredients, The Canning Trade Inc., Baltimore, Maryland.Google Scholar
  38. Lyche, B. C. and Bird, R. B. 1956. The Graetz-Nusselt problem for a power-law non-Newtonian fluid. Chem. Eng. Sei. 6: 35–41.CrossRefGoogle Scholar
  39. Metzner, A. B. and Otto, R. E. 1957. Agitation of non-Newtonian fluids. AIChE J. 3: 3–10.CrossRefGoogle Scholar
  40. Miller, E. J. 1981. The design and operation of agitators for use in whole milk storage vessels. N.Z. J. Dairy Sei. Technol. 16(3): 221–229. Food Sei. Technol. Abstract 80-10–P1720.Google Scholar
  41. Okechukwu, P. E. and Rao, M. A. 1995. Influence of granule size on viscosity of corn starch suspension. J. Texture Stud. 26: 501–516.CrossRefGoogle Scholar
  42. Okechukwu, P. E. and Rao, M. A. 1996. Kinetics of cornstarch granule swelling in excess water, in Gums & Stabilisers for The Food Industry 8 (ed. G. 0. Phillips, P. A. Williams, and D. J. Wedlock), pp. 49–57, The Oxford University Press, Oxford, U.K.Google Scholar
  43. Osorio, F. A. and Steffe, J. F. 1984. Kinetic energy calculations for non-Newtonian fluids in circular tubes. J. Food Sei. 49: 1295–1296 and 1315.Google Scholar
  44. Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid foods, in Viscoelastic Properties of Food, eds. M. A. Rao and J. F. Steffe, pp. 207–232, Elsevier Applied Science Publishers , London.Google Scholar
  45. Rao, M. A. 1995. Rheological properties of fluid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, 2nd ed, pp. 1–53, Marcel Dekker, Inc., New York.Google Scholar
  46. Rao, M. A. and Loncin, M. 1974a. Residence time distribution and its role in continuous pasteurization Part I. Journal Lebensmittel Wissenschaft und Technologie, 7: 5–13.Google Scholar
  47. Rao, M. A. and Loncin, M. 1974b. Residence time distribution and its role in continuous pasteurization Part II. Journal Lebensmittel Wissenschaft und Technologie, 7: 14–17.Google Scholar
  48. Rao, M. A. and Cooley, H. J. 1984. Determination of effective shear rates of complex geometries. J. Texture Stud. 15: 327–335.CrossRefGoogle Scholar
  49. Rao, M. A. and Anantheswaran, R. C. 1988. Convective heat transfer to fluid foods in cans. Adv. Food Res. 32: 39–84.CrossRefGoogle Scholar
  50. Rao, M. A. and Cooley, H. J. 1992. Rheology of tomato pastes in steady and dynamic shear. J. Texture Stud. 23:415–425.CrossRefGoogle Scholar
  51. Rao, M. A., Cooley, H. J., Anantheswaran, R. C. and Ennis, R. W. 1985. Convective heat transfer to canned liquid foods in a Steritort. J. Food Sci. 50: 150–154.CrossRefGoogle Scholar
  52. Rieger, F. and Novak, V. 1973. Power consumption of agitators in highly viscous non-Newtonian liquids. Trans. IChem. E. 51: 105–111.Google Scholar
  53. Roig, S. M., Vitali, A. A., Ortega Rodriguez, E. and Rao, M. A. 1976. Residence time distribution in the holding section of a plate heat exchanger. Journal Lebensmittel Wissenschaft und Technologie, 9: 255–256.Google Scholar
  54. Sancho, M. F., and Rao, M. A. 1992. Residence time distribution in a holding tube. J. Food Eng. 15: 1–19.CrossRefGoogle Scholar
  55. Sestak, J., Zitny, R., and Houska, M. 1983. Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2(1): 35–49.CrossRefGoogle Scholar
  56. Sieder, E. N., and Tate, G. E. 1936. Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28: 1429–1435.CrossRefGoogle Scholar
  57. Simpson, S. G. and Williams, M. C. 1974. An analysis of high temperature/short time sterilization during laminar flow. J. Food Sei. 39: 1047–1054.CrossRefGoogle Scholar
  58. Skelland, A. H. P. 1967. Non-Newtonian Flow and Heat Transfer, John Wiley, New York.Google Scholar
  59. Steffe, J. F. 1996. Rheological Methods in Food Process Engineering, 2nd ed .. Freeman Press. East Lansing, MI, USA.Google Scholar
  60. Steffe, J. F. and Morgan, R. G. 1986. Pipeline design and pump selection for non-Newtonian fluid foods. Food Technol. 40(12): 78–85.Google Scholar
  61. Steffe, J. F., Mohamed, I. O., and Ford, E. W. 1984. Pressure drop across valves and fittings for pseudoplastic fluids in laminar flow. Trans. Am. Soc. Agric. Engrs. 27: 616–619.CrossRefGoogle Scholar
  62. Stevens, P. M. 1972. Lethality calculations, including effects of product movement, for convection heating and broken heating foods in still-cook retorts. Ph.D. dissertation, Univ. of Massachusetts, Amherst, MA.Google Scholar
  63. Tattiyakul, J. 2001. Heat transfer to a canned starch dispersion under agitation: Numerical simulation and experiment. Ph.D. Thesis, Cornell University, Ithaca, NY.Google Scholar
  64. Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydr. Polym. 43: 215–222.CrossRefGoogle Scholar
  65. Tattiyakul, J., Rao, M. A., and Datta, A. K. 2002a. Heat transfer to a canned corn starch dispersion under intermittent agitation. J. Food Eng. 54(4): 321–329.CrossRefGoogle Scholar
  66. Tattiyakul, J., Rao, M. A., and Datta, A. K. 2002b. Heat transfer to three canned fluids of different thermo-rheological behavior under intermittent agitation. IChemE Trans. Part C—Food and Bioproducts Process 80: 20–27.CrossRefGoogle Scholar
  67. Veerkamp, C. H., Romijn, A. J. M., and Pol, J. C. 1974. Influence of varying residence time distribution on inactivation of microorganisms during pasteurization of egg products. Lebensm.-Wiss. u. -Technol. 1: 306–310.Google Scholar
  68. Vitali, A. A. and Rao, M. A. 1984a. Flow properties of low-pulp concentrated orange juice: serum viscosity and effect of pulp content. J. Food Sci. 49: 876–881.CrossRefGoogle Scholar
  69. Vitali, A. A. and Rao, M. A. 1984b. Flow properties of low-pulp concentrated orange juice: effect of temperature and concentration. J. Food Sci. 49: 882–888.CrossRefGoogle Scholar
  70. Wilkens, R. J., Henry, C., and Gates, L. E. 2003. How to scale-up mixing processes in non-Newtonian fluids. Chem. Eng. Progress 99(5): 44–52.Google Scholar
  71. Wissler, E. H. and Schechter, R. S. 1959. The Graetz-Nusselt problem with extension for a Bingham plastic. Chem. Eng. Prog. Symp. Ser; 29–34.Google Scholar
  72. Yang, W. H. 1997. Rheological behavior and heat transfer to a canned starch dispersion: computer simulation and experiment. Ph.D. thesis, Cornell University, Ithaca, NY.Google Scholar
  73. Yang, W. H. and Rao, M. A. 1998a. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.CrossRefGoogle Scholar
  74. Yang, W. H. and Rao, M. A. 1998b. Transient natural convection heat transfer to starch dispersion in a cylindrical container: numerical solution and experiment J Food Eng. 36: 395–415.CrossRefGoogle Scholar
  75. Yang, W. H. and Rao, M. A. 1998c. Numerical study of parameters affecting broken heating curve. J. Food Eng. 36–37: 43–61.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Food ScienceCornell UniversityGenevaUSA

Personalised recommendations