Skip to main content

Climatic Changes: Looking Back, Looking Forward

  • Chapter
  • First Online:

Abstract

Why do we need to be concerned about the role of meteorology in the energy system? How large a change in meteorological variables could have adverse effect on energy systems? These are the underlying questions explored in this chapter. In particular, we note that not only is the energy sector at risk from future climate changes, it is also at risk from current hydro-meteorological climate variability and change. It is important therefore to assess the climate observed in recent decades along with the changes we might expect in the future. By examining a selection of meteorological variables, this chapter exposes how climate has been, and will continue to be, variable on climatic timescales. The extent to which such variability (and extremes) could be modified under climate change, and therefore have an impact on the energy sector is discussed. Current understanding of pertinent changes in extreme weather events, and estimates of impacts on the energy sector given climate change are also summarised.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bonelli P, Lacavalla M (2010) Trends in snow deposition on overhead electric lines: using synoptic data to investigate the relationship black-out risk/climate change. In: Troccoli A (ed) Management of weather and climate risk in the energy industry. NATO Science Series. Springer Academic Publisher, Dordrecht, pp 305–314

    Chapter  Google Scholar 

  • Botzen WJW, Bouwer LM, van den Bergh JCJM (2010) Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resour Energy Econ 32(3):341–362

    Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173

    Article  Google Scholar 

  • Davy R, Troccoli A (2012) Interannual variability of solar electricity generation in Australia. Sol Energy. doi:10.1016/j.solener.2011.12.004

    Google Scholar 

  • Dee DP et al. (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

  • Ebinger J, Vergara W (eds) (2011) Climate impacts on energy systems: key issues for energy sector adaptation, World Bank Publication, Herndon

    Google Scholar 

  • Emmanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Amer Meteor Soc 89:347–367. doi:10.1175/BAMS-89-3-347

    Google Scholar 

  • Fikke S, Ronsten G, Heimo A, Kunz H, Ostrozlik M, Personn P-E, Sabata J, Wareing B, Wichura B, Chum J, Laakso T, Santti K, Makkonen L (2007) Atmospheric icing on structures measurements and data collection on icing: state of art—COST 727. MeteoSwiss, Switzerland, 75, pp 110

    Google Scholar 

  • Johnston PC, Gomez JF, Laplante B (2012) Climate risk and adaptation in the electric power sector. Asian development bank publication, Philippines. Available at: http://www.iadb.org/intal/intalcdi/PE/2012/12152.pdf

  • Krey V, Canadell JG, Nakicenovic N et al (2009) Gas Hydrates: entrance to a methane age or climate threat? Environ Res Lett 4:1–6. doi:10.1088/1748-9326/4/3/034007

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near- surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401. doi:10.1029/2005GL025080

    Article  Google Scholar 

  • Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res 113:F02011. doi:10.1029/2007JF000883

    Google Scholar 

  • Leblond A, Farzaneh M et al (2006) Guidelines for meteorological icing models, statistical methods and topographical effects. Electra 225:116

    Google Scholar 

  • Lowe JA, Gregory JM (2010) A sea of uncertainty. Nat Rep Clim Change http://dx.doi.org/10.1038/climate.2010.30

  • Makkonen L (1998) Modeling power line icing in freezing precipitation. Atmos Res 46:131–142

    Article  Google Scholar 

  • McGuire AD, Chapin FS, Walsh JE, Wirth C (2006) Integrated regional changes in Arctic climate feedbacks: implications for the Global Climate System. Annu Rev Environ Resour 31:61–91. doi:10.1146/annurev.energy.31.020105.100253

    Article  Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Axel T, Jürgen G, Deepak J, Youcef H, Mahowald NM, Mescherskaya AV, Kruger AC, Shafiqur R, Yagob D (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416–417:182–205

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Niall S, Walsh k (2005) The impact of climate change on hailstorms in southeastern Australia. Int J Climatol, 25(14):1933–1952

    Google Scholar 

  • Pielke RA Jr, Gratz J, Landsea CW, Collins D, Saunders MA, Musulin R (2008) Normalized Hurricane Damage in the United States: 1900–2005. Nat Hazards Rev 9(1):29–42. doi:10.1061/ASCE1527-6988

    Google Scholar 

  • Pokhrel YN, Hanasaki N, Yeh PJF, Yamada TJ, Kanae S, Oki T (2012) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci. doi:10.1038/NGEO1476

    Google Scholar 

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to twenty-first-century sea-level rise. Science 321:1340–1343. doi:10.1126/science.1159099

    Article  CAS  Google Scholar 

  • Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968

    Article  CAS  Google Scholar 

  • Schaeffer R, Szklo A, Frossard Pereira de Lucena A, Soares Moreira Cesar Borba B, Pinheiro Pupo Nogueira L, Pereira Fleming F, Troccoli A, Harrison A, Boulahya MS (2012) Energy sector vulnerability to climate change: a review. The Int Energy J 38:1–12. doi:10.1016/j.energy.2011.11.056

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, USA

    Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tribbia J, Troccoli A (2008) Getting the coupled model ready at the starting blocks. In: Troccoli A, Harrison M, Anderson DLT, Mason SJ (eds) Seasonal climate: forecasting and managing risk, NATO Science Series. Springer Academic Publishers, Dordrecht, pp 91–126

    Chapter  Google Scholar 

  • Troccoli A, Muller K, Coppin P, Davy R, Russell C, Hirsch AL (2011a) “Long-term wind speed trends over Australia”, J Clim, 25:170–183, doi:10.1175/2011JCLI4198.1

    Google Scholar 

  • Troccoli A, Zambon F, Hodges K, Marani M (2011b) “Storm surge frequency reduction in Venice under climate change”, Clim Change, doi:10.1007/s10584-011-0093-x

  • Troccoli A et al (2010) Weather/climate risk management for the energy sector: workshop recommendations. In: Troccoli A (ed) management of weather and climate risk in the energy industry, NATO Science Series. Springer Academic Publisher, Dordrecht, pp 327–332

    Chapter  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, The´paut J-N, Ciais P (2010) Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761. doi:10.1038/ngeo979

    Google Scholar 

  • Vlasova L, Rakitina GS (2010) Natural risks management in the gas transmission system (GTS) of Russia and contribution to climate services under global climate change. In: Troccoli A (ed) Management of weather and climate risk in the energy industry, NATO Science Series. Springer Academic Publisher, Dordrecht, pp 315–325

    Chapter  Google Scholar 

  • Wang XM, Chen D, Ren ZG (2010) Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build Environ 45(7):1663–1682

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server (http://data-portal.ecmwf.int/). Sea-level data from the TOPEX/Poseidon, Jason-1 and Jason-2 satellite missions have been downloaded from CSIRO’s site http://www.cmar.csiro.au/sealevel/sl_data_cmar.html. The Coupled Model Intercomparison Project 3 (CMIP3) climate model outputs have been obtained from (https://esg.llnl.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Troccoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Troccoli, A. (2014). Climatic Changes: Looking Back, Looking Forward. In: Troccoli, A., Dubus, L., Haupt, S. (eds) Weather Matters for Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9221-4_3

Download citation

Publish with us

Policies and ethics