Skip to main content

Overview of Irradiance and Photovoltaic Power Prediction

  • Chapter
  • First Online:
Weather Matters for Energy

Abstract

Power generation from solar and wind energy systems is highly variable due to its dependence on meteorological conditions. With the constantly increasing contribution of photovoltaic (PV) power to the electricity mix, reliable predictions of the expected PV power production are getting more and more important as a basis for management and operation strategies. We give an overview of different approaches for solar irradiance and PV power prediction, including numerical weather predictions for forecast horizons of several days, very short-term forecasts based on the detection of cloud motion in satellite or ground-based sky images, and statistical methods to optimize and combine different data sources as well as methods for PV simulation and upscaling to regional PV power predictions. Evaluation results for selected irradiance and power prediction schemes show the benefit of different approaches for different timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacher P, Madsen H, Nielsen HA (2009) Online short-term solar power forecasting. Sol Energy 83:1772–1783

    Article  Google Scholar 

  • Beyer HG, Luther J, Steinberger-Willms R (1993) Power fluctuations in spatially dispersed wind turbine systems. Solar Energy 50:297–305

    Google Scholar 

  • Beyer HG, Betcke J, Drews A et al (2004) Identification of a general model for the MPP performance of PV modules for the application in a procedure for the performance check of grid connected systems. In: Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, pp 3073–3076

    Google Scholar 

  • Chow CW, Urquhart B, Lave M et al (2011) Intra-hour forecasting with a total sky imager at the UC3 San Diego solar energy testbed. Sol Energy 85(11):2881–2893. doi:10.1016/j.solener.2011.08.025

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmospheric Sci 46:3077–3107. doi:10.1175/1520-0469(1989)0462.0.CO;2

    Article  Google Scholar 

  • Glahn HR, Lowry DA (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211

    Article  Google Scholar 

  • Hammer A, Heinemann D, Hoyer C et al (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86:423–432

    Article  Google Scholar 

  • Klucher TM (1979) Evaluation of models to predict insolation on tilted surfaces. Sol Energy 23:111–114. doi:10.1016/S0038-092X(87)80031-2

    Article  Google Scholar 

  • Kühnert J, Lorenz E, Heinemann D (2013) Satellite-based irradiance and power forecasting for the german energy market' in solar energy forecasting and resource assessment, Editor: Jan Kleissl (Elsevier 2013).

    Google Scholar 

  • Lara-Fanego V, Ruiz-Arias JA, Pozo-Vázquez D, Santos-Alamillos FJ, Tovar-Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in Andalusia (Southern Spain). Sol Energy 86(8):2200–2217. doi:10.1016/j.solener.2011.02.014

    Article  Google Scholar 

  • Lorenz E, Heinemann D (2012) Prediction of solar irradiance and photovoltaic power. Compr Renew Energy 1:239–292. doi:10.1016/B978-0-08-087872-0.00114-1

  • Lorenz E, Heinemann D, Hammer A (2004) Short-term forecasting of solar radiation based on satellite data. In: Proceedings of EuroSun 2004. Freiburg, Germany, pp 841–848

    Google Scholar 

  • Lorenz E, Hurka J, Heinemann D, Beyer HG (2009) Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J Special Topics Earth Observ Remote Sens 2:2–10

    Article  Google Scholar 

  • Lorenz E, Scheidsteger T, Hurka J et al (2011) Regional PV power prediction for improved grid integration. Progr Photovoltaics Res Appl 19: 757–771. doi:10.1002/pip.1033

  • Lorenz E, Kühnert J, Heinemann D (2012) Short term forecasting of solar irradiance by combining satellite data and numerical weather predictions. In: Proceedings of 27th European Photovoltaic Solar Energy Conference, Valencia, Spain, pp 4401–440

    Google Scholar 

  • Lorenz E, Heinemann D, Kurz C (2012b) Local and regional photovoltaic power prediction for large scale grid integration: assessment of a new algorithm for snow detection. Progr Photovoltaics Res Appl 20:760–769. doi:10.1002/pip.1224

    Article  Google Scholar 

  • Marquez R, Coimbra CFM (2011) Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 85:746–756

    Article  Google Scholar 

  • Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: methodology and validation. Quart J Royal Meteorol Soc 122:73–119

    Article  Google Scholar 

  • Morcrette JJ, Barker HW, Cole JNS et al (2008) Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon Weather Rev 136:4773–4798

    Article  Google Scholar 

  • Pedro HTC, Coimbra CFM (2012) Assessment of forecasting techniques for solar power output with no exogenous variables. Sol Energy 86:2017–2028

    Article  Google Scholar 

  • Pelland S, Gallanis G, Kallos G (2013) Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Progr Photovoltaics Res Appl 21: 284–296. doi:10.1002/pip.1180

  • Reikard G (2009) Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol Energy 83(3):342–349. doi:10.1016/j.solener.2008.08.007

    Article  CAS  Google Scholar 

  • Remund J, Schilter C, Dierer S et al (2008) Operational forecast of PV production. In: Proceedings of 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, pp 3138–3140

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. TechnicalNote NCAR/TN-475+STR. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Traunmüller W, Steinmaurer G (2010) Solar irradiance forecasting, benchmarking of different techniques and applications to energy meteorology. In: Proceedings of EuroSun 2010. Graz, Austria

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lorenz, E., Kühnert, J., Heinemann, D. (2014). Overview of Irradiance and Photovoltaic Power Prediction. In: Troccoli, A., Dubus, L., Haupt, S. (eds) Weather Matters for Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9221-4_21

Download citation

Publish with us

Policies and ethics