Skip to main content

Established Thermomechanical Heat Engine Cycles

  • Chapter
  • First Online:
Thermal Energy Harvesting for Application at MEMS Scale

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

This chapter describes and discusses the four most common external combustion thermodynamic cycles: Stirling, Brayton, Ericsson, and Rankine. Internal combustion thermodynamic cycles, such as Otto, Diesel, and rocket, will not be considered, because it is impractical to use them for waste heat capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Stirling Company (2011) Frequently Asked Questions #3. http://www.stirlingengine.com/faq. Accessed 4 Nov 2011

  2. Hargreaves CM (1991) The Phillips stirling engine. Elsevier Science Pub. Co., Inc, New York

    Google Scholar 

  3. Anon (2011) Kockums stirling AIP system. http://www.kockums.se/en/products-services/submarines/stirling-aip-system/. Accessed 1 April 2012

  4. Wark K (1989) Thermodynamics, 5th edn. McGraw-Hill, New York

    Google Scholar 

  5. Cooke-Yarborough E, Franklin E, Douglas W (1974) Stirling cycle heat engines

    Google Scholar 

  6. Nanohmics Inc., High efficiency MEMS based cryocooler. http://sbirsource.com/sbir/awards/113844-high-efficiency-mems-based-cryocooler. Accessed 25 Sep 2013

  7. Patterson DE, Jamison KD, Durrett M et al (2007) CVD diamond based miniature stirling cooler. In: International cryocooler conference

    Google Scholar 

  8. Nakajima N, Ogawa K, Fujimasa I (1989) Study on micro engines-miniaturizing Stirling engines for actuators and heatpumps. Sens Actuators 20:75–82

    Article  Google Scholar 

  9. Formosa F, Chaillout J, Dessornes O (2008) Size effects on Stirling cycle micro engine. In: Proceeding of PowerMEMS, Sendai, Japan, pp 2–5

    Google Scholar 

  10. Earnest E, Passinos B (1979) Temperature stratified turbine compressors. US Patent 4,133,171

    Google Scholar 

  11. Chang H-M, Chung MJ, Lee S, Choe KH (2011) An efficient multi-stage Brayton–JT cycle for liquefaction of natural gas. Cryogenics 51:278–286. doi:10.1016/j.cryogenics.2010.10.006

    Google Scholar 

  12. Rosa RJ (1991) Characteristics of a closed Brayton cycle piston engine. In: IEEE Western Canada conference on computer, power and communications systems in a rural environment, pp 153–159

    Google Scholar 

  13. Doty D, Jones JD (1990) A new look at the closed Brayton cycle. In: Proceedings of the 25th intersociety energy conversion engineering conference, IECEC-90, vol 2, pp 166–172. doi: 10.1109/IECEC.1990.716564

  14. Epstein AH (2003) Millimeter-scale, MEMS gas turbine engines. ASME Turbo Expo 2003, Power for Land, Sea, and Air, Atlanta, p 38866

    Google Scholar 

  15. Epstein AH, Jacobson SA, Protz JM, Frechette LG (2004) Shirtbutton-sized gas turbines: the engineering challenges of micro high speed rotating machinery. J Eng Gas Turbines Power 126:358. doi:10.1115/1.1739246

    Article  Google Scholar 

  16. Wiser W (2000) Energy resources: occurrence, production, conversion, use, technology. Springer, New York, p 392

    Google Scholar 

  17. Badr O, Naik S, O’Callaghan PW, Probert SD (1991) Rotary Wankel engines as expansion devices in steam Rankine-cycle engines. Appl Energy 39:59–76. doi:10.1016/0306-2619(91)90063-4

    Article  Google Scholar 

  18. Johnston JR (2001) Evaluation of expanders for use in a solar-powered Rankine Cycle Heat Engine. Doctoral dissertation, Ohio State University, pp 1–138

    Google Scholar 

  19. Fréchette LG, Lee C, Arslan S (2003) Design of a microfabricated rankine cycle steam turbine for power generation. In: International mechanical engineering congress and exposition. doi:10.1115/IMECE2003-42082

  20. Cho J, Lin C, Richards C (2009) Demonstration of an external combustion micro-heat engine. Proc Combust Inst 32:3099–3105

    Article  Google Scholar 

  21. Henderson C (2007) Fossil fuel-fired power generation: case studies of recently constructed coal- and gas-fired power plants, 1st edn, p 176

    Google Scholar 

  22. Prepared by the coal utilization Research Council and the Electric Power Research Institute (2012) TLC CURC-EPRI Coal Technology Roadmap. 1–30. http://www.coal.org/usefile/file/FINAL%20Roadmap%20Report%20Update%20-%20August%202012%20%28graphics%20and%20links%29.pdf. Accessed 25 Sep 2013

  23. Lee C, Fréchette L (2005) Experimental development of the rotating subsystem for a micro rankine power system. In: PowerMEMS Workshop, Tokyo, Japan

    Google Scholar 

  24. Lee C, Liamini M, Frechette LG (2011) A silicon microturbopump for a Rankine-cycle power-generation microsystem; Part II: fabrication and characterization. J Microelectromech Syst 20:326–338. doi:10.1109/JMEMS.2010.2093562

    Article  Google Scholar 

  25. Frechette LG, Jacobson SA, Breuer KS et al (2005) High-speed microfabricated silicon turbomachinery and fluid film bearings. J Microelectromech Syst 14:141–152. doi:10.1109/JMEMS.2004.839008

    Article  Google Scholar 

  26. Muller N, Frechette LG (2002) Optimization and design guidelines for high flux micro-channel heat sinks for liquid and gaseous single-phase flow. In: Proceedings of the 8th conference on thermal and thermomechanical phenomena in electronic systems, pp 449–456

    Google Scholar 

  27. Whalen S, Thompson M, Bahr D et al (2003) Design, fabrication and testing of the P3 micro heat engine. Sens Actuators A 104:290–298

    Article  Google Scholar 

  28. Cho J, Wiser T, Richards C et al (2007) Fabrication and characterization of a thermal switch. Sens Actuators A 133:55–63. doi:10.1016/j.sna.2006.03.033

    Article  Google Scholar 

  29. Whalen SA, Richards CD, Bahr DF, Richards RF (2007) Characterization and modeling of a microcapillary driven liquid–vapor phase-change membrane actuator. Sens Actuators A 134:201–212. doi:10.1016/j.sna.2006.04.038

    Article  Google Scholar 

  30. Cho J, Weiss L, Richards C (2007) Power production by a dynamic micro heat engine with an integrated thermal switch. J Micromech Microeng 17:S217–S223. doi:10.1088/0960-1317/17/9/S02

    Article  Google Scholar 

  31. Bardaweel H, Richards R, Richards C, Anderson M (2012) Characterization of the thermodynamic cycle of a MEMS-based external combustion resonant engine. Microsyst Technol 18:693–701. doi:10.1007/s00542-012-1496-y

    Article  Google Scholar 

  32. LaGrandeur J, Crane D, Eder A (2005) Vehicle fuel economy improvement through thermoelectric waste heat recovery. In: Proceedings of the 11th diesel engine emissions reduction

    Google Scholar 

  33. Ericsson J (1856) Air-engine. US Patent 14,690

    Google Scholar 

  34. Ericsson J (1851) Engine for producing motive power. US Patent 8481

    Google Scholar 

  35. Lee C, Frechette LG (2011) A silicon microturbopump for a rankine-cycle power generation microsystem—Part I: component and system design. J Microelectromech Syst 20:312–325. doi:10.1109/JMEMS.2010.2093561

    Article  Google Scholar 

  36. Ericsson J (1880) Air-engine. US Patent 226,052

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Percy .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Percy, S., Knight, C., McGarry, S., Post, A., Moore, T., Cavanagh, K. (2014). Established Thermomechanical Heat Engine Cycles. In: Thermal Energy Harvesting for Application at MEMS Scale. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9215-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9215-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9214-6

  • Online ISBN: 978-1-4614-9215-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics