Advertisement

Genome Plasticity and Dynamic Evolution of Phytopathogenic Pseudomonads and Related Bacteria

  • Marco Scortichini
  • Simone Marcelletti
  • Patrizia Ferrante
  • Milena Petriccione
  • Emanuela Torelli
  • Giuseppe Firrao
Chapter

Abstract

Pseudomonads represent widely distributed plant pathogenic bacteria, which cause diseases in most cultivated mono and dicotyledonous crops worldwide. Currently, 25 phytopathogenic Pseudomonas spp. have been identified and described; four of these species contain distinct pathovars. The general features of Pseudomonas syringae and Pseudomonas savastanoi include a genome size of approximately 6 Mb, with a 57–59 % G + C content, 5,200–5,700 protein-encoding genes, and 85.6–88.7 % coding sequences. The core genome of the P. syringae species complex contains 3,397 genes, whereas its “pan” genome, currently based on the genomic assessment of 19 different pathovars, contains 12,749 genes. Many strains of P. syringae pathovars contain one or more plasmids with an extensive amount of shared DNA sequences. There are striking examples of how the acquisition or loss of an entire plasmid or genomic (pathogenicity) island harboured from a particular plasmid determines a differential response of the host plant to bacterial attack. Cases of evolution through the gain or loss of a whole plasmid or its part are illustrated. Examples of dynamic genetic rearrangements involving genes for elicitors of the plant immunity system, the type III secretion system, and their effector proteins are illustrated along with a case of pathogen convergent evolution to the same host plant and the evolutionary dynamics found in Ralstonia solanacearum. Finally, cell-to-cell communication and two-component signal transduction are discussed in the global network of regulated communication.

Keywords

Secretion System Effector Protein Mobile Genetic Element Core Genome Genomic Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrios GN (2005) Plant pathology, 5th edn. Academic, San DiegoGoogle Scholar
  2. Alexander H (2010) Disease in natural plant populations, communities, and ecosystems: insights into ecological and evolutionary processes. Plant Dis 94:492–503Google Scholar
  3. Almeida NF, Yan S, Lindeberg M et al (2009) A draft genome sequences of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 22:52–62PubMedGoogle Scholar
  4. Anderson PK, Cunningham AA, Patel NG et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544PubMedGoogle Scholar
  5. Arrebola E, Cazorla FM, Perez-Garcia A et al (2011) Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins 3:1089–1110PubMedCentralPubMedGoogle Scholar
  6. Baltrus DA, Nishimura MT, Romanchuck A et al (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 7:e1002132PubMedCentralPubMedGoogle Scholar
  7. Bardaji L, Pérez-Martinez I, Rodriguez-Moreno L et al (2011) Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS One 6:e25705PubMedCentralPubMedGoogle Scholar
  8. Bergelson J, Dwyer G, Emerson J (2001) Models and data on plant-enemy coevolution. Annu Rev Genet 35:469–499PubMedGoogle Scholar
  9. Bhatt G, Denny TP (2004) Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. J Bacteriol 186:7896–7904PubMedCentralPubMedGoogle Scholar
  10. Brown JKM, Tellier A (2011) Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol 49:345–367PubMedGoogle Scholar
  11. Buell CR, Joardar V, Lindeberg M et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186PubMedCentralPubMedGoogle Scholar
  12. Bull CT, De Boer SH, Denny TP et al (2010) Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J Plant Pathol 92:551–592Google Scholar
  13. Bull CT, De Boer SH, Denny TP et al (2012) List of new names of plant pathogenic bacteria (2008–2010). J Plant Pathol 94:21–27Google Scholar
  14. Büttner D, Bonas U (2006) Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol 9:193–200PubMedGoogle Scholar
  15. Cai R, Lewis J, Yan S et al (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130PubMedCentralPubMedGoogle Scholar
  16. Castillo JA, Greenberg JT (2007) Evolutionary dynamics of Ralstonia solanaceraum. Appl Environ Microbiol 73:1225–1238PubMedCentralPubMedGoogle Scholar
  17. Chatterjee A, Cui Y, Yang H et al (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 18:1102–1117Google Scholar
  18. Clarke CR, Cai R, Studholme DJ et al (2010) Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 23:198–210PubMedGoogle Scholar
  19. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426PubMedGoogle Scholar
  20. Collmer A, Badel JL, Charkowski AO et al (2000) Pseudomonas syringae Hrp Type III secretion system and effector proteins. Proc Natl Acad Sci U S A 97:8770–8777PubMedCentralPubMedGoogle Scholar
  21. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B Biol Sci 205:489–511PubMedGoogle Scholar
  22. Denny TP (2007) Plant-pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644Google Scholar
  23. Diallo MB, Monteil CL, Vinatzer BA (2012) Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME J 6:1325–1335Google Scholar
  24. Dobrindt U, Hochhut B, Hentschel U et al (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424PubMedGoogle Scholar
  25. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interaction. Nat Rev Genet 11:539–548PubMedGoogle Scholar
  26. Feil H, Feil WS, Chain P et al (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102:11064–11069PubMedCentralPubMedGoogle Scholar
  27. Ferrante P, Scortichini M (2010) Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol 59:954–962Google Scholar
  28. Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open-source evolution. Nat Rev Microbiol 3:722–732PubMedGoogle Scholar
  29. Garrett KA, Dendy SP, Frank EE et al (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509PubMedGoogle Scholar
  30. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanaceraum species complex. Annu Rev Phytopathol 50:67–89PubMedGoogle Scholar
  31. Genka H, Baba T, Tsuda M et al (2006) Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars. J Mol Evol 63:401–414PubMedGoogle Scholar
  32. Gibbon MJ, Sesma A, Canal A et al (1999) Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiology 145:325–334PubMedGoogle Scholar
  33. Gilbert GS (2002) Evolutionary ecology of plant disease in natural ecosystems. Annu Rev Phytopathol 40:13–43PubMedGoogle Scholar
  34. Green S, Laue B, Fossdal CG et al (2009) Infection of horse chestnut (Aesculus hippocastanum) by Pseudomonas syringae pv. aesculi and its detection by quantitative real-time PCR. Plant Pathol 58:731–744Google Scholar
  35. Green S, Studholme DJ, Laue BE et al (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 5:e10224PubMedCentralPubMedGoogle Scholar
  36. Guttman DS, Greenberg JT (2001) Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol Plant Microbe Interact 14:145–155PubMedGoogle Scholar
  37. Guttman DS, Gropp SJ, Morgan RL et al (2006) Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae. Mol Biol Evol 23:2343–2354Google Scholar
  38. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 21:376–381Google Scholar
  39. Hayward AC (2000) Ralstonia solanacearum. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4. Academic, San Diego, pp 32–42Google Scholar
  40. He J, Baldini RL, Déziel E et al (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 10:2530–2535Google Scholar
  41. Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653PubMedCentralPubMedGoogle Scholar
  42. Huang J, Yindeeyoungyeon W, Garg RP et al (1998) Joint transcriptional control of xpsR, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator. J Bacteriol 180:2736–2743PubMedCentralPubMedGoogle Scholar
  43. Iacobellis NS, Sisto A, Surico G et al (1994) Pathogenicity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. J Phytopathol 140:238–248Google Scholar
  44. Ingle RA, Carstens M, Denby KG (2006) PAMP recognition and the plant-pathogen arms race. Bioessays 28:880–889PubMedGoogle Scholar
  45. Jackson RW, Athanassopoulos E, Tsiamis G et al (1999) Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A 96:10875–10880PubMedCentralPubMedGoogle Scholar
  46. Jakobek JL, Smith JA, Lindgren PB (1993) Suppression of bean defense responses by Pseudomonas syringae. Plant Cell 5:57–63PubMedCentralPubMedGoogle Scholar
  47. Joardar V, Lindeberg M, Jackson RW et al (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498PubMedCentralPubMedGoogle Scholar
  48. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedGoogle Scholar
  49. Lindeberg M, Cunnac S, Collmer A (2009) The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10:767–775PubMedGoogle Scholar
  50. Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208PubMedGoogle Scholar
  51. Lindgreen PB, Peet RC, Panoupoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522Google Scholar
  52. Loper JE, Henkels MD, Shaffer BT et al (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093PubMedCentralPubMedGoogle Scholar
  53. Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Pathog 8:e1008724Google Scholar
  54. Lovell HC, Mansfield JW, Godfrey SAC et al (2009) Bacterial evolution by genomic island transfer occurs via DNA transformation in planta. Curr Biol 19:1586–1590PubMedGoogle Scholar
  55. Ma W, Dong FFT, Stavrinides J et al (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209PubMedCentralPubMedGoogle Scholar
  56. Marcelletti S, Ferrante P, Petriccione M et al (2011) Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One 6:e27297PubMedCentralPubMedGoogle Scholar
  57. Mathee K, Narasimhan G, Valdes C et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105:3100–3105PubMedCentralPubMedGoogle Scholar
  58. Mazzaglia A, Studholme DJ, Taratufolo MC et al (2012) Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7:e36518PubMedCentralPubMedGoogle Scholar
  59. McCann HC, Nahal H, Thakur S et al (2012) Identification of innate immunity elicitors using molecular signatures of natural selection. Proc Natl Acad Sci U S A 109:4215–4220PubMedCentralPubMedGoogle Scholar
  60. Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594PubMedGoogle Scholar
  61. Mohr TJ, Liu H, Yan S et al (2008) Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190:2858–2870PubMedCentralPubMedGoogle Scholar
  62. Mole BM, Baltrus DA, Dangl JJ et al (2007) Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol 15:363–371PubMedGoogle Scholar
  63. Morris CE, Kinkel LL, Xiao K et al (2007) Surprising niche for the plant pathogen Pseudomonas syringae. Infect Genet Evol 7:84–92PubMedGoogle Scholar
  64. Murillo J, Bardaji L, Navarro de la Fuente L et al (2011) Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition. Res Microbiol 162:253–261PubMedGoogle Scholar
  65. National Centre for Biotechnology Information (2012) Nucleotide database. http://www.ncbi.nlm.nih.gov. Accessed 13 Dec 2012
  66. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808PubMedGoogle Scholar
  67. O’Brien H, Thakur S, Guttman DS (2011) Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu Rev Phytopathol 49:269–289PubMedGoogle Scholar
  68. O’Brien H, Thakur S, Gong Y et al (2012) Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol 12:141PubMedCentralPubMedGoogle Scholar
  69. Ogier JC, Calteau J, Forst S et al (2010) Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 11:568PubMedCentralPubMedGoogle Scholar
  70. Palleroni NJ (1993) Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie Van Leeuwenhoek 64:231–251PubMedGoogle Scholar
  71. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303PubMedGoogle Scholar
  72. Petriccione M, Di Cecco I, Arena S et al (2013) Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteomics 78:461–476PubMedGoogle Scholar
  73. Pitman AR, Jackson RW, Mansfield JW et al (2005) Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol 15:2230–2235PubMedGoogle Scholar
  74. Preston GM, Haubold B, Rainey PB (1998) Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbionts. Curr Opin Microbiol 1:589–597PubMedGoogle Scholar
  75. Qi M, Wang D, Bradley CA et al (2011) Genome sequence analysis of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 6:16451Google Scholar
  76. Quiñones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531PubMedGoogle Scholar
  77. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharides production, motility and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693PubMedGoogle Scholar
  78. Rahme LG, Mindrinos MN, Panopoulos NJ (1992) Plant and environmental sensory signal control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol 174:3499–3507PubMedCentralPubMedGoogle Scholar
  79. Rankin DJ, Rocha EPC, Brown SP (2011) What traits are carried on mobile genetic elements and why? Heredity 106:1–10PubMedGoogle Scholar
  80. Reinhardt JA, Baltrus DA, Nishimura MT et al (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19:294–305PubMedGoogle Scholar
  81. Rico A, Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact 21:269–282PubMedGoogle Scholar
  82. Rico A, Lopez R, Asensio C et al (2003) Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559PubMedGoogle Scholar
  83. Rivas LA, Mansfield J, Tsiamis G et al (2005) Changes in race-specific virulence in Pseudomonas syringae pv. phaseolicola are associated with a chimeric transposable element and rare deletion events in a plasmid-borne pathogenicity island. Appl Environ Microbiol 71:3778–3785PubMedCentralPubMedGoogle Scholar
  84. Rocha EPC (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7:519–527PubMedGoogle Scholar
  85. Rodriguez-Palenzuela P, Matas IM, Murillo J et al (2010) Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody host. Environ Microbiol 12:1604–1620PubMedGoogle Scholar
  86. Rohmer L, Guttman DS, Dangl JL (2004) Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 147:1341–1360Google Scholar
  87. Sarkar SF, Gordon JS, Martin GB et al (2006) Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174:1041–1056PubMedGoogle Scholar
  88. Sawada H, Suzuki F, Matsuda I et al (1999) Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49:627–644PubMedGoogle Scholar
  89. Sawada H, Kanaya S, Tsuda M et al (2002) A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes. J Mol Evol 54:437–457PubMedGoogle Scholar
  90. Scortichini M (2002) Bacterial canker and decline of European hazelnut. Plant Dis 86:704–709Google Scholar
  91. Scortichini M, Marchesi U, Rossi MP et al (2002) Bacteria associated with hazelnut (Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae. Appl Environ Microbiol 68:476–484PubMedCentralPubMedGoogle Scholar
  92. Scortichini M, Natalini E, Marchesi U (2006) Evidence for separate origins of the two Pseudomonas avellanae lineages. Plant Pathol 55:451–457Google Scholar
  93. Scortichini M, Marcelletti S, Ferrante P et al (2012) Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Mol Plant Pathol 13:631–640PubMedGoogle Scholar
  94. Sesma A, Sundin GW, Murillo J (1998) Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl Environ Microbiol 64:3948–3953PubMedCentralPubMedGoogle Scholar
  95. Sesma A, Sundin GW, Murillo J (2000) Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiology 146:2375–2384PubMedGoogle Scholar
  96. Shapiro JA (2009) Revisiting the central dogma in the 21th century. Ann N Y Acad Sci 1178:6–28PubMedGoogle Scholar
  97. Silby MW, Cerdeño-Tárraga AM, Vernikos GS et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51PubMedCentralPubMedGoogle Scholar
  98. Silby MW, Winstanley G, Godfrey SAC et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680PubMedGoogle Scholar
  99. Spencer DH, Kas A, Smith EC et al (2003) Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185:1316–1325PubMedCentralPubMedGoogle Scholar
  100. Stavrinides J, Guttman DS (2004) Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. J Bacteriol 186:5101–5115PubMedCentralPubMedGoogle Scholar
  101. Stavrinides J, Ma W, Guttman DE (2006) Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2:e104PubMedCentralPubMedGoogle Scholar
  102. Studholme DJ, Gimenez Ibanez S, Maclean D et al (2009) A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 10:395PubMedCentralPubMedGoogle Scholar
  103. Sundin GW (2007) Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu Rev Phytopathol 4:129–151Google Scholar
  104. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955PubMedCentralPubMedGoogle Scholar
  105. Touzain F, Denamur E, Medique C et al (2010) Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol 11:R45PubMedCentralPubMedGoogle Scholar
  106. Vivian A, Murillo J, Jackson RW (2001) The roles of plasmids in phytopathogenic bacteria. Mobile arsenals? Microbiology 147:763–780PubMedGoogle Scholar
  107. Wang PW, Morgan RL, Scortichini M et al (2007) Convergent evolution of phytopathogenic pseudomonads onto hazelnut. Microbiology 153:2067–2073PubMedGoogle Scholar
  108. Weinel C, Ermolaieva MD, Ouzounis C (2003) PseuRECA: genome annotation and gene context analysis for Pseudomonas aeruginosa PAO1. Bioinformatics 19:1457–1460PubMedGoogle Scholar
  109. Wicker E, Lefeuvre P, De Cambiaire JC et al (2012) Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME J 6:961–974PubMedGoogle Scholar
  110. Wolfang MC, Kulasekara BR, Liang X et al (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:8484–8489Google Scholar
  111. Yan Y, Jang J, Dou Y et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105:7564–7569PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marco Scortichini
    • 1
  • Simone Marcelletti
    • 1
  • Patrizia Ferrante
    • 1
  • Milena Petriccione
    • 2
  • Emanuela Torelli
    • 3
  • Giuseppe Firrao
    • 3
  1. 1.C.R.A., Consiglio per la Ricerca e Sperimentazione in Agricultura, Centro di Ricerca per la FrutticolturaRomeItaly
  2. 2.C.R.A., Unità di Ricerca per la FrutticolturaCasertaItaly
  3. 3.Dipartimento Scienze Agrarie ed AmbientaliUniversità degli Studi di UdineUdineItaly

Personalised recommendations