Skip to main content

2D Ultrasound in Follicle Monitoring for ART

  • Chapter
  • First Online:
Ultrasound Imaging in Reproductive Medicine

Abstract

Ultrasound imaging may be the most powerful instrument in the tool chest the reproductive endocrinologist has to improve success rates with assisted reproductive technologies! This modality, improving yearly, permits noninvasive access to view ovarian responses to gonadotropin stimulation. The introduction of transvaginal ultrasound for follicle monitoring during ovulation induction has improved both the safety and success of ART dramatically. Transvaginal ultrasound imaging is thought to be imperative for the safe use of gonadotropins, to optimize treatment, and to avoid potentially life-threatening side effects, such as ovarian hyperstimulation syndrome. Currently the use of 2D ultrasound for assessing follicular development during gonadotropin stimulation for ART is essentially universal. Despite near-ubiquitous use, the 2D ultrasound characteristics of ovarian follicles that reliably predict retrieval of mature and fertilizable oocytes are still being elucidated. We review the development of this 2D ultrasound over the past three decades and review the literature regarding follicle characteristics (size, volume, intrafollicular fluid, and perifollicular vascularization) that correlate with ART success. The follicle characteristics, associated with the use of non-gonadotropin medications for ovulation induction, are also reviewed. We also question current practices and look to the future. Is it really necessary to scan during gonadotropin stimulation as currently practiced, is it associated with better outcomes (higher live-born pregnancy rates), and would it be better if Doppler flow analysis were added to routine protocols? Should follicular monitoring be done by computerized analysis or should each follicle be scanned separately as is currently done by the majority of clinical practices? Our goal is to identify practices and protocols that predict successful outcomes in order to optimize care. With advances in technical engineering, the image quality of 2D ultrasound improves, and the resolution of cellular and subcellular problems, previously not even visualized, is now revealed. One can imagine the next generation of machines, with even clearer images of molecular parameters that will enable further studies that lead to new treatment targets and ultimately greater successes in the management of infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AFC:

Antral follicle count

ART:

Assisted reproductive technologies

CI:

Confidence interval

CL:

Corpus luteum

ET:

Embryo transfer

FI:

Flow index

FSH:

Follicle-stimulating hormone

GnRH:

Gonadotropin-releasing hormone

GV:

Germinal vesicle

hCG:

Human chorionic gonadotropin

ICSI:

Intracytoplasmic sperm injection

IVF:

In vitro fertilization

LH:

Luteinizing hormone

MII:

Mature metaphase II

OHSS:

Ovarian hyperstimulation syndrome

PI:

Pulsatility index

PR:

Pregnancy rates

PSV:

Peak systolic velocity

RI:

Resistance index

S/D:

Systole/diastole ratio

VI:

Vascularization index

References

  1. Hackeloer BJ, Robinson HP. Ultrasound examination of the growing ovarian follicle and of the corpus luteum during the normal physiologie menstrual cycle (author’s transl). Geburtshilfe Frauenheilkd. 1978;38(3):163–8.

    CAS  PubMed  Google Scholar 

  2. Ylostalo P, Lingren PG, Nillius SJ. Ultrasonic measurement of ovarian follicles, ovarian and uterine size during induction of ovulation with human gonadotrophins. Acta Endocrinol (Copenh). 1981;98(4):592–8.

    CAS  Google Scholar 

  3. Ben-Haroush A, Farhi J, Zahalka Y, Sapir O, Meizner I, Fisch B. Small antral follicle count (2–5 mm) and ovarian volume for prediction of pregnancy in in vitro fertilization cycles. Gynecol Endocrinol. 2011;27(10):748–52.

    Article  PubMed  Google Scholar 

  4. Ben-Haroush A, Farhi J, Zahalka Y, Sapir O, Meizner I, Fisch B. Correlations between antral follicle count and ultrasonographic ovarian parameters and clinical variables and outcomes in IVF cycles. Gynecol Endocrinol. 2012;28(6):432–5.

    Article  CAS  PubMed  Google Scholar 

  5. Jokubkiene L, Sladkevicius P, Rovas L, Valentin L. Assessment of changes in volume and vascularity of the ovaries during the normal menstrual cycle using three-dimensional power Doppler ultrasound. Hum Reprod. 2006;21(10):2661–8.

    Article  PubMed  Google Scholar 

  6. Verberg MF, Macklon NS, Nargund G, Frydman R, Devroey P, Broekmans FJ, et al. Mild ovarian stimulation for IVF. Hum Reprod Update. 2009;15(1):13–29.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas K, Searle T, Quinn A, Wood S, Lewis-Jones I, Kingsland C. The value of routine estradiol monitoring in assisted conception cycles. Acta Obstet Gynecol Scand. 2002;81(6):551–4.

    Article  PubMed  Google Scholar 

  8. Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Monitoring stimulated cycles during in vitro fertilization treatment with ultrasound only–preliminary results. Gynecol Endocrinol. 2012;28(6):429–31.

    Article  CAS  PubMed  Google Scholar 

  9. Kwan I, Bhattacharya S, McNeil A, van Rumste MM. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev. 2008;(2):CD005289.

    Google Scholar 

  10. Wikland M, Hillensjö T. Monitoring ovarian response in IVF cycles. In: Gardner D, Weissman A, Howles C, Shoham Z, editors. Textbook of assisted reproductive techniques. 4th ed. London: Informa Healthcare; 2012. p. 560.

    Google Scholar 

  11. Penzias AS, Emmi AM, Dubey AK, Layman LC, DeCherney AH, Reindollar RH. Ultrasound prediction of follicle volume: is the mean diameter reflective? Fertil Steril. 1994;62(6):1274–6.

    CAS  PubMed  Google Scholar 

  12. Tur-Kaspa I, Stadtmauer L. Ultrasonography in assisted reproduction. In: Gardner DK, Weismann A, Howles CM, Shoham Z, editors. Textbook of assisted reproductive techniques. 4th ed. London: Informa Healthcare; 2012. p. 225–42.

    Google Scholar 

  13. Kolibianakis EM, Albano C, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of the follicular phase in in vitro fertilization results in a lower ongoing pregnancy rate in cycles stimulated with recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonists. Fertil Steril. 2004;82(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wittmaack FM, Kreger DO, Blasco L, Tureck RW, Mastroianni Jr L, Lessey BA. Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection. Fertil Steril. 1994;62(6):1205–10.

    CAS  PubMed  Google Scholar 

  15. Miller KF, Goldberg JM, Falcone T. Follicle size and implantation of embryos from in vitro fertilization. Obstet Gynecol. 1996;88(4 Pt 1):583–6.

    Article  CAS  PubMed  Google Scholar 

  16. Haning Jr RV, Austin CW, Kuzma DL, Shapiro SS, Zweibel WJ. Ultrasound evaluation of estrogen monitoring for induction of ovulation with menotropins. Fertil Steril. 1982;37(5):627–32.

    PubMed  Google Scholar 

  17. Merce LT, Bau S, Barco MJ, Troyano J, Gay R, Sotos F, et al. Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the HCG day to predict the outcome in IVF/ICSI cycles. Hum Reprod. 2006;21(5):1218–26.

    Article  PubMed  Google Scholar 

  18. Suchanek E, Simunic V, Juretic D, Grizelj V. Follicular fluid contents of hyaluronic acid, follicle-stimulating hormone and steroids relative to the success of in vitro fertilization of human oocytes. Fertil Steril. 1994;62(2):347–52.

    CAS  PubMed  Google Scholar 

  19. Teissier MP, Chable H, Paulhac S, Aubard Y. Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod. 2000;15(12):2471–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bergh C, Broden H, Lundin K, Hamberger L. Comparison of fertilization, cleavage and pregnancy rates of oocytes from large and small follicles. Hum Reprod. 1998;13(7):1912–5.

    Article  CAS  PubMed  Google Scholar 

  21. Shmorgun D, Hughes E, Mohide P, Roberts R. Prospective cohort study of three- versus two-dimensional ultrasound for prediction of oocyte maturity. Fertil Steril. 2010;93(4):1333–7.

    Article  PubMed  Google Scholar 

  22. Ectors FJ, Vanderzwalmen P, Van HJ, Nijs M, Verhaegen G, Delvigne A, et al. Relationship of human follicular diameter with oocyte fertilization and development after in-vitro fertilization or intracytoplasmic sperm injection. Hum Reprod. 1997;12(9):2002–5.

    Article  CAS  PubMed  Google Scholar 

  23. Inaudi P, Germond M, Senn A, De GP. Timing of hCG administration in cycles stimulated for in vitro fertilization: specific impact of heterogeneous follicle sizes and steroid concentrations in plasma and follicle fluid on decision procedures. Gynecol Endocrinol. 1995;9(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  24. Salha O, Nugent D, Dada T, Kaufmann S, Levett S, Jenner L, et al. The relationship between follicular fluid aspirate volume and oocyte maturity in in-vitro fertilization cycles. Hum Reprod. 1998;13(7):1901–6.

    Article  CAS  PubMed  Google Scholar 

  25. Detti L, Yelian FD, Kruger ML, Diamond MP, Puscheck EE. Endometrial thickness dynamics and morphologic characteristics during pituitary downregulation with antagonists in assisted reproductive technology cycles. J Ultrasound Med. 2008;27(11):1591–6.

    PubMed  Google Scholar 

  26. De GC, Schmitter M, De GM, Nieschlag E, Holzgreve W, Schneider HP. Prospective evaluation of the ultrasound appearance of the endometrium in a cohort of 1,186 infertile women. Fertil Steril. 2000;73(1):106–13.

    Article  Google Scholar 

  27. Momeni M, Rahbar MH, Kovanci E. A meta-analysis of the relationship between endometrial thickness and outcome of in vitro fertilization cycles. J Hum Reprod Sci. 2011;4(3):130–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang L, Qiao J, Li R, Zhen X, Liu Z. Role of endometrial blood flow assessment with color Doppler energy in predicting pregnancy outcome of IVF-ET cycles. Reprod Biol Endocrinol. 2010;8:122.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chien LW, Au HK, Chen PL, Xiao J, Tzeng CR. Assessment of uterine receptivity by the endometrial-subendometrial blood flow distribution pattern in women undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2002;78(2):245–51.

    Article  PubMed  Google Scholar 

  30. Fanchin R. Assessing uterine receptivity in 2001: ultrasonographic glances at the new millennium. Ann N Y Acad Sci. 2001;943:185–202.

    Article  CAS  PubMed  Google Scholar 

  31. Check JH, Choe JK, Amui J, Brasile D, Jamison T. Evaluation of the importance of late follicular phase endometrial echo patterns and pregnancy outcome following embryo transfer by evaluating infertile donor/recipient pairs. Clin Exp Obstet Gynecol. 2011;38(4):318–9.

    CAS  PubMed  Google Scholar 

  32. Check JH. The importance of sonographic endometrial parameters in influencing success following embryo transfer in the modern era and therapeutic options–part 1: the importance of late proliferative phase endometrial thickness. Clin Exp Obstet Gynecol. 2011;38(3):197–200.

    CAS  PubMed  Google Scholar 

  33. Jarvela IY, Sladkevicius P, Tekay AH, Campbell S, Nargund G. Intraobserver and interobserver variability of ovarian volume, gray-scale and color flow indices obtained using transvaginal three-dimensional power Doppler ultrasonography. Ultrasound Obstet Gynecol. 2003;21(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  34. Ardaens Y, Gougeon A, Lefebvre C, Thomas P, Leroy M, Leroy JL, et al. Contribution of ovarian and uterine color Doppler in medically assisted reproduction techniques (ART). Gynecol Obstet Fertil. 2002;30(9):663–72.

    Article  CAS  PubMed  Google Scholar 

  35. Lovrec VG, Vlaisavljevic V, Reljic M. Dependence of the in-vitro fertilization capacity of the oocyte on perifollicular flow in the preovulatory period of unstimulated cycles. Wien Klin Wochenschr. 2001;113 Suppl 3:21–6.

    PubMed  Google Scholar 

  36. Nargund G, Doyle PE, Bourne TH, Parsons JH, Cheng WC, Campbell S, et al. Ultrasound derived indices of follicular blood flow before HCG administration and the prediction of oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11(11):2512–7.

    Article  CAS  PubMed  Google Scholar 

  37. Shrestha SM, Costello MF, Sjoblom P, McNally G, Bennett M, Steigrad SJ, et al. Power Doppler ultrasound assessment of follicular vascularity in the early follicular phase and its relationship with outcome of in vitro fertilization. J Assist Reprod Genet. 2006;23(4):161–9.

    Article  CAS  PubMed  Google Scholar 

  38. Jadaon JE, Ben-Ami M, Haddad S, Radin O, Bar-Ami S, Younis JS. Prospective evaluation of early follicular ovarian stromal blood flow in infertile women undergoing IVF-ET treatment. Gynecol Endocrinol. 2012;28(5):356–9.

    Article  CAS  PubMed  Google Scholar 

  39. Coulam CB, Goodman C, Rinehart JS. Colour Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer. Hum Reprod. 1999;14(8):1979–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Cohen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toftager, M., Cohen, D.P. (2014). 2D Ultrasound in Follicle Monitoring for ART. In: Stadtmauer, L., Tur-Kaspa, I. (eds) Ultrasound Imaging in Reproductive Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9182-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9182-8_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9181-1

  • Online ISBN: 978-1-4614-9182-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics