Microstructure Evolution of Copper in Nanoscale Interconnect Features

  • James Kelly
  • Christopher Parks
  • James Demarest
  • Juntao Li
  • Christopher Penny
Part of the Nanostructure Science and Technology book series (NST)


The evolution of copper microstructure and incorporated impurities was studied using transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS), and electrical resistance measurements for narrow (~28–40 nm) and wide Damascene features. Resistance measurements suggest an increasing degree of post-CMP microstructure evolution with anneal as linewidth falls below 100 nm for both “doped” and “pure” electrodeposited Cu. SIMS shows increased levels of incorporated sulfur and chlorine in narrow Cu lines whose concentration distributions appear unaffected by annealing at 350 °C, in contrast to redistribution observed in wider lines. Wide lines exhibit significant grain growth with a high temperature anneal, while little to no grain growth is evident upon anneal in narrow line longitudinal TEM sections. This post-anneal resistance drop and concomitant lack of recrystallization and grain growth in the narrow Cu lines is consistent with a microstructure recovery process, where defects in the Cu lattice are eliminated without appreciable formation and growth of new grains.


Wide Line High Anneal Temperature Line Resistance Narrow Line Chemical Mechanical Planarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities. We are grateful to Dan Edelstein of IBM for critically reviewing the original manuscript. We also acknowledge useful discussions with Dr. Dan Josell of NIST.


  1. 1.
    Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik J, Rathore H, Schulz R, Su L, Luce S, Slattery J (1997) Full copper wiring in a sub-0.25 mm cmos ulsi technology. In: Technical digest, IEEE international electron devices meeting, pp 773–776Google Scholar
  2. 2.
    Andricacos PC, Uzoh C, Duckovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42(5):567CrossRefGoogle Scholar
  3. 3.
    West AC, Mayer S, Reid J (2001) A superfilling model that predicts bump formation. Electrochem Solid State lett 4(7):C50CrossRefGoogle Scholar
  4. 4.
    Moffat TP, Wheeler D, Huber WH, Josell D (2001) Superconformal electrodeposition of copper. Electrochem Solid State Lett 4(4):C26CrossRefGoogle Scholar
  5. 5.
    Vivian Feng Z, Li X, Gewirth AA (2003) Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study. J Phys Chem B 107:9415CrossRefGoogle Scholar
  6. 6.
    Akolkar R, Landau U (2004) A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization. J Electrochem Soc 151(11):C702CrossRefGoogle Scholar
  7. 7.
    Vereecken PM, Binstead RA, Deligianni H, Andricacos PC (2005) The chemistry of additives in damascene copper plating. IBM J Res Dev 49(1):3CrossRefGoogle Scholar
  8. 8.
    Moffat TP, Wheeler D, Edelstein MD, Josell D (2005) Superconformal film growth: mechanism and quantification. IBM J Res Dev 49(1):19CrossRefGoogle Scholar
  9. 9.
    Harper JME, Cabral C Jr, Andricacos PC, Gignac L, Noyan IC, Rodbell KP, Hu CK (1999) Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J Appl Phys 86(5):2516CrossRefGoogle Scholar
  10. 10.
    Ueno K, Ritzdorf T, Grace S (1999) Seed layer dependence of room-temperature recrystallization in electroplated copper films. J Appl Phys 86(9):4930CrossRefGoogle Scholar
  11. 11.
    Hau-Riege SP, Thompson CV (2000) In situ transmission electron microscope studies of abnormal grain growth in electroplated copper films. Appl Phys Lett 76(3):309CrossRefGoogle Scholar
  12. 12.
    Field DP, Dornisch D, Tong HH (2001) Investigating the microstructure-reliability relationship in cu damascene lines. Scripta Mater 45:1069CrossRefGoogle Scholar
  13. 13.
    Yoon MS, Park YJ, Joo YC (2002) Impurity redistributions in electroplated Cu films during self-annealing. Thin Solid Films 408:230–235Google Scholar
  14. 14.
    Brongersma SH, Kerr E, Vervoort I, Saerens A, Maex K (2002) Grain growth, stress, and impurities in electroplated Cu. J Mater Res 17(3):582CrossRefGoogle Scholar
  15. 15.
    Lee H, Wong SS, Dopatin SD (2003) Correlation of stress and texture evolution during self- and thermal annealing of electroplated Cu films. J Appl Phys 93(7):3796CrossRefGoogle Scholar
  16. 16.
    Wu W, Ernur D, Brongersma SH, Van Hove M, Maex K (2004) Grain growth in copper interconnect lines. Microelectron Eng 76:190CrossRefGoogle Scholar
  17. 17.
    Liu C-W, Wang Y-L, Tsai M-S, Feng H-P, Chang S-C, Hwang G-J (2005) Effect of plating current density and annealing on impurities in electroplated Cu film. J Vac Sci Technol A 23(4):658CrossRefGoogle Scholar
  18. 18.
    Stangl M, Acker J, Dittel V, Gruner W, Hoffmann V, Wetzig K (2005) Characterization of electroplated copper self-annealing with investigations focused on incorporated impurities. Microelectron Eng 82:189CrossRefGoogle Scholar
  19. 19.
    Zhang W, Brongersma SH, Heylen N, Beyer G, Vandervorst W, Maex K (2005) Geometry effect on impurity incorporation and grain growth in narrow copper lines. J Electrochem Soc 152(12):C832CrossRefGoogle Scholar
  20. 20.
    Zhang W, Brogersma SH, Conard T, Wu W, Van Hove M, Vandervorst W, Maex K (2005) Impurity incorporation during copper electrodeposition in the curvature-enhanced accelerator coverage regime. Electrochem Solid-State Lett 8(7):C95CrossRefGoogle Scholar
  21. 21.
    Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectron Eng 84:54CrossRefGoogle Scholar
  22. 22.
    Steinlesberger G, Engelhardt M, Schindler G, Steinhoegl W, Von Glasow A, Mosig K, Bertagnolli E (2002) Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron Eng 64:409CrossRefGoogle Scholar
  23. 23.
    Steinhoegl W, Schindler G, Steinlesberger G, Engelhardt M (2002) Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66:075414CrossRefGoogle Scholar
  24. 24.
    Schindler G, Steinlesberger G, Engelhardt M, Steinhoegl W (2003) Electrical characterization of copper interconnects with end-of-roadmap feature sizes. Solid-State Electron 47:1233CrossRefGoogle Scholar
  25. 25.
    Zhang W, Brongersma SH, Li Z, Li D, Richard O, Maex K (2007) Analysis of the size effect in electroplated fine wires and a realistic assessment to model copper resistivity. J Appl Phys 101:063703CrossRefGoogle Scholar
  26. 26.
    Graham RL, Alers GB, Mountsier T, Shamma N, Dhuey S, Cabrini S, Geiss RH, Read DT, Peddeti S (2010) Resistivity dominated by surface scattering in sub-50 nm cu wires. Appl Phys Lett 96:042116CrossRefGoogle Scholar
  27. 27.
    Josell D, Brongersma SH, Tokei Z (2009) Size-dependent resistivity in nanoscale interconnects. Annu Rev Mater Res 39:231CrossRefGoogle Scholar
  28. 28.
    Li B, Sullivan TD, Lee TC, Badami D (2004) Reliability challenges for copper interconnects. Microelectron Reliab 44:365CrossRefGoogle Scholar
  29. 29.
    Hu CK, Gignac L, Baker B et al (2007) Impact of Cu microstructure on electromigration reliability. In: International interconnect technology conference, p 93Google Scholar
  30. 30.
    Nogami T et al (2010) High reliability 32 nm Cu/ULK BEOL based on PVD CuMn seed and its extendibility. In: IEDM, pp 33.5.1–33.5.4Google Scholar
  31. 31.
    Maekawa K, Mori K, Suzumura N, Honda K, Hirose Y, Asai K, Uedono A, Kojima M (2008) Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities. Microelectron Eng 85(10):2137CrossRefGoogle Scholar
  32. 32.
    Yokogawa S, Kikuta K, Tsuchiya H, Takewaki T, Suzuki M, Toyoshima H, Kakuhara Y, Kawahara N, Usami T, Ohto K, Fujii K, Tsuchiya Y, Arita K, Motoyama K, Tohara M, Taijii T, Kurokawa T, Sekine M (2008) Tradeoff characteristics between resistivity and reliability for scaled-down cu-based interconnects. IEEE Trans Electron Devices 55(1):350CrossRefGoogle Scholar
  33. 33.
    Kelly J, Nogami T, van der Straten O, Demarest J, Li J, Penny C, Vo T, Parks C, DeHaven P, Hu CK, Liniger E (2012) Electrolyte additive chemistry and feature size-dependent impurity incorporation for Cu interconnects. J Electrochem Soc 159(10):D563CrossRefGoogle Scholar
  34. 34.
    Moffat TP, Wheeler D, Josell D (2004) Electrodeposition of copper in the SPS -PEG-Cl additive system. I. Kinetic measurements: influence of SPS. J Electrochem Soc 151:C262Google Scholar
  35. 35.
    Hayase M, Taketani M, Aizawa K, Hatsuzawa T, Hayabusa K (2002) Copper bottom-up deposition by breakdown of PEG-Cl inhibition. Electrochem Solid-State Lett 5(10):C98CrossRefGoogle Scholar
  36. 36.
    Hebert KR (2005) Role of chloride ions in suppression of copper electrodeposition by polyethylene glycol. J Electrochem Soc 152(5):C283CrossRefGoogle Scholar
  37. 37.
    Hirsch PB (1997) Electron microscopy of thin crystals. R. E. Krieger Pub Co, USAGoogle Scholar
  38. 38.
    Fukai Y, Mizutani M, Yokota S, Kanazawa M, Miura Y, Watanabe T (2003) Superabundant vacancy-hydrogen clusters in electrodeposited Ni and Cu. J Alloy Compd 356–357:270CrossRefGoogle Scholar
  39. 39.
    Uedono A, Suzuki T, Nakamura T (2004) Vacancy-type defects in electroplated Cu films probed by using a monoenergetic positron beam. J Appl Phys 95:913CrossRefGoogle Scholar
  40. 40.
    Kitaoka Y, Tono T, Yoshimoto S, Hirahara T, Hasegawa S, Ohba T (2009) Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements. Appl Phys Lett 95:052110CrossRefGoogle Scholar
  41. 41.
    Kim TH, Zhang XG, Nicholson DM, Evans BM, Kulkarni NS, Radhakrishnan B, Kenik EA, Li A-P (2010) Large discrete resistance jump at grain boundary in copper nanowire. Nanoletters 10(8):3096Google Scholar
  42. 42.
    Reed-Hill RE, Abbaschian R (1994) Physical metallurgy principles, 3rd edn. PWS Publishing Company, USAGoogle Scholar
  43. 43.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, The NetherlandsGoogle Scholar
  44. 44.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley Publishing Co, USAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • James Kelly
    • 1
  • Christopher Parks
    • 2
  • James Demarest
    • 1
  • Juntao Li
    • 1
  • Christopher Penny
    • 1
  1. 1.IBM ResearchAlbanyUSA
  2. 2.IBM MicroelectronicsHopewell JunctionUSA

Personalised recommendations