Skip to main content

Supression Effect and Additive Chemistry

  • Chapter
  • First Online:
Copper Electrodeposition for Nanofabrication of Electronics Devices

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The excellent additive systems for acid copper sulfate bath developed in the 1960s successfully produce bright copper deposits with smooth surfaces and high ductility. Since then, many applications of copper plating were developed for electronic device and through-hole plating for PCBs as well as conventional decorative plating on steel, electroforming, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kardos O, Durham HB, Tomson AJ, Arcilesi DA (1970) Electrodeposition of copper. USP 3542655

    Google Scholar 

  2. Stoychev DS, Vitanova I, Vitanov T Rashkov St (1978) Adsorption of substances acting as brighteners in the electrolytic deposition of copper. Surf Tech 7:427–432

    Google Scholar 

  3. Konishi S, Yokoi M, Goto S, Itabashi S (1978) Effects of bath composition and brightener on leveling of bright copper plating from copper sulfate baths. J Surf Finish Soc Jpn (in Japanese) 29:339

    Google Scholar 

  4. Mirkova L, Rashkov St, Nanev Chr (1982) The levelling mechanism during bright acid copper plating. Surf Tech 15:181–190

    Google Scholar 

  5. Yokoi M, Konishi S (1983) Interactions of Cl− and brightener-components in copper plating from an acid sulfate bath. J Surf Finish Soc Jpn (in Japanese) 34: 434–439

    Google Scholar 

  6. Hill MRH, Rogers GT (1978) Polyethylene glycol in copper electrodeposition on to a rotating disc electrode. J Electroanal Chem 86:179–188

    Article  CAS  Google Scholar 

  7. Yokoi M, Konishi S, Hayashi T (1984) Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku 52:218–223

    CAS  Google Scholar 

  8. Yokoi M, Konishi S (1984) Effect of polyoxyethylene surfactants on the hardness of copper electrodeposited from an acid copper sulfate bath, J Surf finish Soc Jpn (in Japanese) 35:421–427

    Google Scholar 

  9. White JR (1987) Reverse pulse plating of copper from acid electrolyte; a rotating ring disc electrode study. J Appl Electrochem 17:977–982

    Google Scholar 

  10. Reid JD, David AP (1987) Impedance behavior of a sulfuric acid-cupric sulfate/copper cathode interface. J Electrochem Soc 134:1389–1394

    Article  CAS  Google Scholar 

  11. Healy JP, Pletcher D, Goodenough M (1992) The chemistry of the additives in an acid copper electroplating bath: part I. Polyethylene glycol and chloride ion. J Electroanal Chem 338:155–165

    Google Scholar 

  12. Stoychev DS , Tsvetanov C (1996) Behaviour of poly (ethylene glycol) during electrodeposition of bright copper coatings in sulfuric acid electrolytes. J Appl Electrochem 26:741–749

    Google Scholar 

  13. Stoychev DS (1998) On the role of poly (ethylene glycol) in deposition of galvanic copper coatings. Trans Inst Met Finish 76:73–80

    Google Scholar 

  14. Kelly JJ, West AC (1998) Copper deposition in the presence of polyethylene glycol; I. Quartz crystal microbalance study. J Electrochem Soc 145:3472–3476

    Article  CAS  Google Scholar 

  15. Kelly JJ, West AC (1998) Copper deposition in the presence of polyethylene glycol; II. Electrochemical impedance specfroscopy. J Electrochem Soc 145:3477–3481

    Article  CAS  Google Scholar 

  16. Kelly JJ, Tian C, West AC (1999) Leveling and microstructural effects of additives for copper electrodeposition. J Electrochem Soc 146:2540–2545

    Article  CAS  Google Scholar 

  17. Kondo K, Yamakawa N, Hayashi K (2000) Role of damascene via filling additive-morphology evolution, ECS meeting abstracts of toronto meeting No. 358

    Google Scholar 

  18. Kondo K, Yamakawa N, Tanaka Z, Hayashi K (2003) Copper damascene electrodeposition and additives. J Electroanal Chem 559:137–142

    Article  CAS  Google Scholar 

  19. Kondo K, Matsumoto T, Watanabe K (2004) Role of additives for copper damascene electrodeposition; experimental study on inhibition and acceleration effects. J Electrochem Soc 151:C250–C255

    Article  CAS  Google Scholar 

  20. Jin Y, Kondo K, Suzuki Y, Matsumoto T, Barkey DP (2005) Surface adsorption of PEG and Cl additives for copper damascene electrodeposition. Electrochem Solid-State Lett 8:C6–C8

    Article  CAS  Google Scholar 

  21. Doblhofer K, Wasle S, Soares DM, Weil KG, Ertl G (2003) An EQCM study of the electrochemical Copper(II)/Copper(I)/Copper System in the presence of PEG and Chloride ions. J Electrochem Soc 150:C657–C664

    Article  CAS  Google Scholar 

  22. Feng ZV, Li X, Gewirth AA (2003) Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced raman study. J Phys Chem B 107:9415–9423

    Article  CAS  Google Scholar 

  23. Kang M, Gewirth AA (2003) Influence of additives on copper electrodeposition on physical vapor deposited (PVD) copper substrates. J Electrochem Soc 150:C426–C434

    Article  CAS  Google Scholar 

  24. Walker ML, Richter LJ, Moffat TP (2005) In Situ ellipsometric study of PEG/Cl-Coadsorption on Cu, Ag, and Au. J Electrochem Soc 152:C403–C407

    Google Scholar 

  25. Hebert KR (2005) Role of chloride ions in suppression of copper electrodeposition by polyethyleneglycol. J Electrochem Soc 152(5):C283–C287

    Google Scholar 

  26. Ding R, Zhang X, Evans JW, Doyle FM (2006) EQCM study of the influence of copper ions on the adsorption of polyethyleneglycol and bis (sodiumsulfopropyl) disulfide at a copper cathode. ECS Trans 2(3):281–292

    CAS  Google Scholar 

  27. Willey MJ, West AC (2006) Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition. J Electrochem Soc 153(10):C728–C734

    Article  CAS  Google Scholar 

  28. Huerta Garrido ME, Pritzker MD (2008) Voltammetric study of the inhibition effect of polyethylene glycol and chloride ions on copper deposition. J Electrochem Soc 155(4):D332–D339

    Article  CAS  Google Scholar 

  29. Gallaway JW, West AC (2008) PEG, PPG, and their triblock copolymers as suppressors in copper electroplating. J Electrochem Soc 155(10):D632–D639

    Article  CAS  Google Scholar 

  30. Hayase M, Taketani M, Aizawa K, Hatsuzawa T, Hayabusa K (2002) Copper bottom-up deposition by breakdown of PEG-Cl inhibition. Electrochem Solid-State Lett 5(10):C98–C101

    Article  CAS  Google Scholar 

  31. Hayase M, Taketani M, Hatsuzawa T, Hayabusa K (2003) Trenches by consumption of halide ion preferential copper electrodeposition at submicrometer. Electrochem Solid-State Lett 6(6):C92–C95

    Article  CAS  Google Scholar 

  32. Dow Wei-Ping, Liu De-Huei, Chun-Wei Lu, Chen Chien-Hung, Yan Jhih-Jyun, Huangb Su-Mei (2011) Through-hole filling by copper electroplating using a single organic additive. Electrochem Solid-State Lett 14:D13–D15

    Article  CAS  Google Scholar 

  33. Takeuchi M, Kondo K, Kuri H, Bunya M, Okamoto N, Saito T (2012) Single Diallylamine-Type Copolymer Additive Which Perfectly Bottom-Up Fills Cu Electrodeposition. J Electrochem Soc 159:D230

    Article  CAS  Google Scholar 

  34. Hayashi T, Kondo K, Saito T, Takeuchi M, Okamoto N (2011) High-speed through silicon via (TSV) filling using diallylamine additive II. Optimization of diallylamine concentration. J Electrochem Soc 158:D715–D718

    Article  CAS  Google Scholar 

  35. Moffat TP, Josell D (2012) Extreme bottom-up superfilling of through-silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns. J Electrochem Soc 159(4):D208–D216

    Article  CAS  Google Scholar 

  36. Mac Intyre F, Hull RO (1943) Plating test control of plating baths. Proc Am Electroplater’s Soc 30:95

    Google Scholar 

  37. Terakado R, Nagasaka H, Finishing M (1976) A Study of The Electric Current Distribution in Hull Cell, J Surf finish Soc Jpn (in Japanese) 27:676–680

    Google Scholar 

  38. Papke BL, Ratner MA, Shriver DF (1982) Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts. J Electrochem Soc 129(8):1694–1701

    Article  CAS  Google Scholar 

  39. Yanagida S, Takahashi K, Okamura M (1977) Metal-ion complexation of noncyclic poly (oxyethylene) derivatives. I solvent extraction of alkali and alkaline earth metal thiocyanates and iodides. Bull Chem Soc Jpn 50:1386–1390

    Article  CAS  Google Scholar 

  40. Suryanarayana D, Narayana PA, Kevan L (1983) Effect of molecular cage size on the motion and coordination of copper (2+) in cross-linked poly (vinyl alcohol) and poly (ethyleneoxide) gels: electron spin echo and electron spin resonance studies. Inorg Chem 2:474–478

    Article  Google Scholar 

  41. Noma H, Koga T, Hirakawa C, Nonaka K, Kaibuki T, Moriyama S (2012) Analysis of Cu(I) in copper sulfate electroplating solution. J Surf Finish Soc Jpn (in Japanese) 63:124–128

    Google Scholar 

  42. Vogt MR, Lachenwitzer A, Magnussen OM, Behm RJ (1998) In-situ STM study of the initial stages of corrosion of Cu (100) electrodes in sulfuric and hydrochloric acid solution. Surf Sci 399:49–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yokoi, M. (2014). Supression Effect and Additive Chemistry. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_2

Download citation

Publish with us

Policies and ethics