Advertisement

Anti-infectives

  • Abeer H. A. Mohamed-Ahmed
  • Claire Ginn
  • Simon L. Croft
  • Stephen Brocchini
Chapter

Abstract

Infectious diseases caused by viruses, bacteria, fungi and parasites are becoming a major health concern worldwide. Several serious diseases such as leishmaniasis, malaria, tuberculosis, hepatitis C and human immunodeficiency virus are caused by intracellular pathogens. Fatal systemic infection, e.g. invasive candidiasis, is caused by extracellular fungi. Delivery systems that can target these intracellular or extracellular pathogens can be effective in curing these diseases. Over the last 20 years, several nano-sized delivery systems have shown to be a potential tool for targeting drugs to the site of infection. There are many clinically used nanomedicines for the treatment of infectious diseases such as liposomes (e.g. AmBisome®) and protein-polymer conjugates (e.g. Intron® A). In addition numerous preclinical nano-delivery systems, e.g. polymeric nanoparticles, drug–polymer conjugates and complexes, dendrimers, lipid nanoparticles, cochleates and niosomes have been investigated for delivery of anti-infective agents. In this chapter, a description of these delivery systems, examples of infectious diseases and the rationale of using these delivery systems to treat certain infections will be discussed.

Keywords

Human Immunodeficiency Virus Antifungal Agent Visceral Leishmaniasis Cerebral Malaria Invasive Candidiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

AMA and SB are grateful for funding from NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, Moorfields Special Trustees, the Helen Hamlyn Trust (in memory of Paul Hamlyn), Fight for Sight and Freemasons Grand Charity. SB is also grateful for funding from the UK Engineering & Physical Sciences Research Council (EPSRC) for the EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies. Financial support from the consortium of industrial and governmental users for the EPSRC Centre is also acknowledged.

References

  1. Adams ML, Andes RD, Kwon SG (2003) Amphotericin B encapsulated in micelles based on poly (ethylene oxide)-block-poly (L-amino acid) derivatives exerts reduced in vitro haemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750–757PubMedGoogle Scholar
  2. Adler-Moore JP, Proffitt RT (2008) Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 14(suppl 4):25–36PubMedGoogle Scholar
  3. Adler-Moore J, Chiang S, Satorius A, Guerra D, McAndrews B, Manus E, Proffitt RT (1991) Treatment of murine candidosis and cryptococcosis with a unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother 28(suppl B):63–71PubMedGoogle Scholar
  4. Agrawal A, Singhal A, Gupta CM (1987) Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun 148(1):357–361PubMedGoogle Scholar
  5. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release 19(1–3):29–40Google Scholar
  6. Alconcel SBAS, Maynard HD (2011) FDA approved poly(ethylene glycol)-protein conjugate drugs. Polym Chem 2:1442–1448Google Scholar
  7. Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112(18):2993–3002PubMedGoogle Scholar
  8. Alvar J, Croft SL, Olliaro P (2006) Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol 61:223–274PubMedGoogle Scholar
  9. Alving C, Steck EA, Chapman W, Waits V, Hendricks L, Swartz G, Hanson WL (1978) Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA 75(6):2959–2963PubMedGoogle Scholar
  10. Anaissie E, Darouiche R, Abi-Said D, Uzun O, Mera J, Gentry L, Williams T, Kontoyiannis D, Karl C, Bodey GP (1996) Management of invasive candidal infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis 23(5):964–972PubMedGoogle Scholar
  11. Arikan S, Rex JH (2001) Nystatin LF (Aronex/Abbott). Curr Opin Investig Drugs 2(4):488–495PubMedGoogle Scholar
  12. Armstead A, Li B (2011) Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 6:3281–3293PubMedGoogle Scholar
  13. Badiee P, Alborzi A (2011) Invasive fungal infections in renal transplant recipients. Exp Clin Transplant 9(6):355–362PubMedGoogle Scholar
  14. Bain V, Kaita K, Yoshida E, Swain M, Heathcote E, Neumann A, Fiscella M, Yu R, Osborn B, Cronin P, Freimuth W, Hutchison J, Subramanian GM (2006) A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon alfa fusion protein in genotype 1 chronic hepatitis C patients. J Hepatol 44(4):671–678PubMedGoogle Scholar
  15. Balan V, Nelson D, Sulkowski M, Everson G, Lambiase L, Wiesner R, Dickson R, Post A, Redfield R, Davis G, Neumann A, Osborn B, Freimuth W, Subramanian GM (2006) A phase I/II study evaluating escalating doses of recombinant human albumin-interferon-alpha fusion protein in chronic hepatitis C patients who have failed previous interferon-alpha-based therapy. Antivir Ther 11(1):35–45PubMedGoogle Scholar
  16. Banerjee G, Nandi G, Mahato SB, PAKRASHI A, Basu MK (1996) Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 38(1):145–150PubMedGoogle Scholar
  17. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60(1):21–37PubMedGoogle Scholar
  18. Bassetti M, Blasi E, Giarratano A, DE Rosa F, Balzano L, Viscoli C (2011) Low dosage liposomal amphotericin B in the treatment of Candida infections in critically ill patients. J Chemother 23(4):242PubMedGoogle Scholar
  19. Basu MK, Lala S (2004) Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med 4(6):681–689PubMedGoogle Scholar
  20. Bates LP (1994) The developmental biology of leishmania promastigotes. Exp Parasitol 79(2):215–218PubMedGoogle Scholar
  21. Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37(10):1097–1106PubMedGoogle Scholar
  22. Bern C, Adler-Moore J, Berenguer J, Boelaert M, den Boer M, Davidson RN, Figueras C, Gradoni L, Kafetzis DA, Ritmeijer K, Rosenthal E, Royce C, Russo R, Sundar S, Alvar J (2006) Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 43(7):917–924PubMedGoogle Scholar
  23. Bhattacharya SK, Sinha PK, Sundar S, Thakur CP, Jha TK, Pandey K, Das VR, Kumar N, Lal C, Verma N, Singh VP, Ranjan A, Verma RB, Anders G, Sindermann H, Ganguly NK (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196(4):591–598PubMedGoogle Scholar
  24. Bohme A, Ruhnke M, Buchheidt D, Cornely O, Einsele H, Enzensberger R, Hebart H, Heinz W, Junghanss C, Karthaus M, Kruger W, Krug U, Kubin T, Penack O, Reichert D, Reuter S, Silling G, Sudhoff T, Ullmann A, Maschmeyer G (2009) Treatment of invasive fungal infections in cancer patients—recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 88(2):97–110PubMedGoogle Scholar
  25. Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9(4):512–531PubMedGoogle Scholar
  26. Bray PG, Barrett MP, Ward SA, de Koning HP (2003) Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 19(5):232–239PubMedGoogle Scholar
  27. Brighenti S, Andersson J (2012) Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 3(suppl 2):S316–S324Google Scholar
  28. Briones E, Colino C, Lanao JM (2008) Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 125(3):210–227PubMedGoogle Scholar
  29. Brown R, Hazen EL (1957) Present knowledge of nystatin, an antifungal antibiotic. Trans N Y Acad Sci 19(5):447–456PubMedGoogle Scholar
  30. Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6(11):928–934PubMedGoogle Scholar
  31. Buates S, Matlashewski G (1999) Treatment of experimental leishmaniasis with the immunomodulators imiquimod and S-28463: efficacy and mode of action. J Infect Dis 179:1485–1494PubMedGoogle Scholar
  32. Burchmore JSR, Barrett PM (2001) Life in vacuoles- nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31:1311–1320PubMedGoogle Scholar
  33. Carter KC, Baillie AJ, Mullen AB (1999) The cured immune phenotype achieved by treatment of visceral leishmaniasis in the BALB/c mouse with a nonionic surfactant vesicular formulation of sodium stibogluconate does not protect against reinfection. Clin Diagn Lab Immunol 6(1):61–65PubMedGoogle Scholar
  34. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control. Nat Rev Microbiol 5:S7–S16Google Scholar
  35. Chaudhari K, Ukawala M, Manjappa A, Kumar A, Mundada P, Mishra A, Mathur R, Monkkonen J, Murthy RS (2012) Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res 29(1):53–68PubMedGoogle Scholar
  36. Chunge CN, Owate J, Pamba HO, Donno L (1990) Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg 84(2):221–225PubMedGoogle Scholar
  37. Clark J, Whitney R, Olsen S, George R, Swerdel M, Kunselman L, Bonner DP (1991) Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother 35(4):615–621PubMedGoogle Scholar
  38. Coltel N, Combes V, Hunt N, Grau GE (2004) Cerebral malaria: a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 1(2):91–110PubMedGoogle Scholar
  39. Conover DC, Zahao H, Longley BC, Shum LK, Greenwald BR (2003) Utility of poly(ethyleneglycol) conjugation to create prodrugs of amphotericin B. Bioconjug Chem 14:661–666PubMedGoogle Scholar
  40. Croft SL, Coombs HG (2003) Leishmaniasis—current chemotherapy and recent advances in the search of novel drugs. Trends Parasitol 19:502–508PubMedGoogle Scholar
  41. Croft SL, Yardley V (2002) Chemotherapy of leishmaniasis. Curr Pharm Des 8:273–302Google Scholar
  42. Croft SL, Neal R, Pendergast W, Chan JH (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36(16):2633–2636PubMedGoogle Scholar
  43. Das S, Pandey K, Singh T, Topno R, Singh D, Verma R, Ranjan A, Sinha P, Das P (2009) A controlled, randomized nonblinded clinical trial to assess the efficacy of amphotericin B deoxycholate as compared to pentamidine for the treatment of antimony unresponsive visceral leishmaniasis cases in Bihar, India. Ther Clin Risk Manag 5(1):117–124PubMedGoogle Scholar
  44. Dasgupta D, Chakraborty P, Basu MK (2000) Ligation of Fc receptor of macrophages stimulates protein kinase C and anti-leishmanial activity. Mol Cell Biochem 209(1–2):1–8PubMedGoogle Scholar
  45. Date A, Joshi M, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59(6):505–521PubMedGoogle Scholar
  46. Davidson RN, den Boer M, Ritmeijer K (2009) Paromomycin. Trans R Soc Trop Med Hyg 103(7):653–660PubMedGoogle Scholar
  47. Deol P, Khuller G, Joshi K (1997) Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob Agents Chemother 41(6):1211–1214PubMedGoogle Scholar
  48. Desjardins M, Griffiths G (2003) Phagocytosis: latex leads the way. Curr Opin Cell Biol 15(4):498–503PubMedGoogle Scholar
  49. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27(5):305–318PubMedGoogle Scholar
  50. du Toit L, Pillay V, Danckwerts MP (2006) Tuberculosis chemotherapy: current drug delivery approaches. Respir Res 7:118PubMedGoogle Scholar
  51. Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22(4):492–501PubMedGoogle Scholar
  52. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141PubMedGoogle Scholar
  53. Durand R, Paul M, Rivollet D, Fessi H, Houin R, Astier A, Deniau M (1997a) Activity of pentamidine-loaded poly (D, L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite 4(4):331–336PubMedGoogle Scholar
  54. Durand R, Paul M, Rivollet D, Houin R, Astier A, Deniau M (1997b) Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int J Parasitol 27(11):1361–1367PubMedGoogle Scholar
  55. Eggimann P, Garbino J, Pittet D (2003a) Management of Candida species infections in critically ill patients. Lancet Infect Dis 3(12):772–785PubMedGoogle Scholar
  56. Eggimann P, Garbino J, Pittet D (2003b) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3(11):685–702PubMedGoogle Scholar
  57. El-Ridy M, Mostafa D, Shehab A, Nasr E, Abd El-Alim S (2007) Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int J Pharm 330(1–2):82–88PubMedGoogle Scholar
  58. Espuelas S, Legrand P, Loiseau P, Bories C, Barratt G, Irache J (2000) In vitro reversion of amphotericin B resistance in Leishmania donovani by Poloxamer 188. Antimicrob Agents Chemother 44(8):2190–2192PubMedGoogle Scholar
  59. Espuelas M, Legrand P, Campanero M, Appel M, Cheron M, Gamazo C, Barratt G, Irache JM (2003) Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 52(3):419–427PubMedGoogle Scholar
  60. Falk R, Domb AJ, Polacheck I (1999) A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother 43(8):1975–1981PubMedGoogle Scholar
  61. Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239(4840):617–622PubMedGoogle Scholar
  62. Feld J, Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436(7053):967–972PubMedGoogle Scholar
  63. Firpi RD, Nelson DR (2007) Current and future hepatitis C therapies. Arch Med Res 38(6):678–690PubMedGoogle Scholar
  64. Fukui H, Koike T, Nakagawa T, Saheki A, Sonoke S, Tomii Y, Seki J (2003) Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS), with commercial lipid-based formulations. Int J Pharm 267(1–2):101–112PubMedGoogle Scholar
  65. Gallis H, Drew R, Pickard W (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329PubMedGoogle Scholar
  66. Gardella F, Assi S, Simon F, Bogreau H, Eggelte T, Ba F, Foumane V, Henry M, Kientega P, Basco L, Trape J, Lalou R, Martelloni M, Desbordes M, Baragatti M, Briolant S, Almeras L, Pradines B, Fusai T, Rogier C (2008) Antimalarial drug use in general populations of tropical Africa. Malar J 7:124PubMedGoogle Scholar
  67. Ghannoum M, Rice L (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12(4):501–517PubMedGoogle Scholar
  68. Glue P, Fang J, Rouzier-Panis R, Raffanel C, Sabo R, Gupta S, Salfi M, Jacobs S (2000) Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther 68(5):556–567PubMedGoogle Scholar
  69. Gold W, Stout H, Pagano JF, Donowick R (1956) Amphotericin A and B, antifungal antibiotics produced by a streptomycete. In vitro studies. Antibiot Ann 79:586Google Scholar
  70. Gonzalez-Juarrero M (2012) Immunity to TB and targets for immunotherapy. Immunotherapy 4(2):187–199PubMedGoogle Scholar
  71. Goossens H (2009) Antibiotic consumption and link to resistance. Clin Microbiol Infect 15(suppl 3):12–15PubMedGoogle Scholar
  72. Gotzsche P, Johansen HK (2002) Nystatin prophylaxis and treatment in severely immunodepressed patients. Cochrane Database Syst Rev (4):CD002033Google Scholar
  73. Grace M, Youngster S, Gitlin G, Sydor W, Xie L, Westreich L, Jacobs S, Brassard D, Bausch J, Bordens R (2001) Structural and biologic characterization of pegylated recombinant IFN-alpha2b. J Interferon Cytokine Res 21(12):1103–1115PubMedGoogle Scholar
  74. Green PJ, Feizi T, Stoll MS, Thiel S, Prescott A, McConville MJ (1994) Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol 66(2):319–328PubMedGoogle Scholar
  75. Greenwood B, Fidock D, Kyle D, Kappe S, Alonso P, Collins F, Duffy PE (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118(4):1266–1276PubMedGoogle Scholar
  76. Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 300(1–2):125–130PubMedGoogle Scholar
  77. Groll A, Petraitis V, Petraitiene R, Field-Ridley A, Calendario M, Bacher J, Piscitelli S, Walsh TJ (1999) Safety and efficacy of multilamellar liposomal nystatin against disseminated candidiasis in persistently neutropenic rabbits. Antimicrob Agents Chemother 43(10):2463–2467PubMedGoogle Scholar
  78. Grubb S, Murdoch C, Sudbery P, Saville S, Lopez-Ribot J, Thornhill MH (2008) Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun 76(10):4370–4377PubMedGoogle Scholar
  79. Guerin P, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson AD (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2(8):494–501PubMedGoogle Scholar
  80. Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ (2010) Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 62(4–5):518–531PubMedGoogle Scholar
  81. Gupta U, Jain NK (2010) Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 62(4–5):478–490PubMedGoogle Scholar
  82. Gupta S, Vyas SP (2007) Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. J Drug Target 15(3):206–217PubMedGoogle Scholar
  83. Gupta S, Pal A, Vyas SP (2010) Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv 7(3):371–402PubMedGoogle Scholar
  84. Guru PY, Agrawal AK, Singha UK, Singhal A, Gupta CM (1989) Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 245(1–2):204–208PubMedGoogle Scholar
  85. Hajjeh R, Sofair A, Harrison L, Lyon G, Arthington-Skaggs B, Mirza S, Phelan M, Morgan J, Lee-Yang W, Ciblak M, Benjamin L, Sanza L, Huie S, Yeo S, Brandt M, Warnock DW (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42(4):1519–1527PubMedGoogle Scholar
  86. Harris J, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221PubMedGoogle Scholar
  87. Hirst DH, Jain S, Laing P, Genkin D, Gregoriadis G (2002) Preparation and properties of polysialylated interferon 2b. In: AAPS annual meeting, p 1056Google Scholar
  88. Husain S, Tollemar J, Dominguez E, Baumgarten K, Humar A, Paterson D, Wagener M, Kusne S, Singh N (2003) Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients: prospective, multicenter, case-controlled study. Transplantation 75(12):2023–2029PubMedGoogle Scholar
  89. Irache JM, Salman HH, Gamazo C, Espuelas S (2008) Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 5(6):703–724PubMedGoogle Scholar
  90. Jain C, Vyas SP (1995) Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 12(4):401–407PubMedGoogle Scholar
  91. Jain JP, Jatana M, Chakrabarti A, Kumar N (2011) Amphotericin-B-loaded polymersomes formulation (PAMBO) based on (PEG)(3)-PLA copolymers: an in vivo evaluation in a murine model. Mol Pharm 8(1):204–212PubMedGoogle Scholar
  92. Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128PubMedGoogle Scholar
  93. Juliano R (2013) Nanomedicine: is the wave cresting. Nat Rev Drug Discovery 12(3):171–172Google Scholar
  94. Juster-Reicher A, Flidel-Rimon O, Amitay M, Even-Tov S, Shinwell E, Leibovitz E (2003) High-dose liposomal amphotericin B in the therapy of systemic candidiasis in neonates. Eur J Clin Microbiol Infect Dis 22(10):603–607PubMedGoogle Scholar
  95. Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22(6):868–876PubMedGoogle Scholar
  96. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161(2):429–445PubMedGoogle Scholar
  97. Kullberg BJ, Verweij P, Akova M, Rendrup M, Bille J, Calandra T, Cuenca-Estrella M, Herbrecht R, Jacobs F, Kalin M, Kibbler C, Lortholary O, Martino P, Meis J, Munoz P, Odds F, De Pauw B, Rex J, Roilides E, Rogers T, Ruhnke M, Ullmann A, Uzun O, Vandewoude K, Vincent J, Donnelly JP (2011) European expert opinion on the management of invasive candidiasis in adults. Clin Microbiol Infect 17(suppl 5):1–12PubMedGoogle Scholar
  98. Kumar P, Asthana A, Dutta T, Jain NK (2006) Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 14(8):546–556PubMedGoogle Scholar
  99. Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227PubMedGoogle Scholar
  100. Larson J, Wallace T, Tyl R, Marr M, Myers C, Cossum PA (2000) The reproductive and developmental toxicity of the antifungal drug Nyotran (liposomal nystatin) in rats and rabbits. Toxicol Sci 53(2):421–429PubMedGoogle Scholar
  101. Lawlor C, Kelly C, O’Leary S, O’Sullivan M, Gallagher P, Keane J, Cryan SA (2011) Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis (Edinb) 91(1):93–97Google Scholar
  102. Lindsay K, Trepo C, Heintges T, Shiffman M, Gordon S, Hoefs J, Schiff E, Goodman Z, Laughlin M, Yao R, Albrecht JK (2001) A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology 34(2):395–403PubMedGoogle Scholar
  103. Longmuir K, Robertson R, Haynes S, Baratta J, Waring AJ (2006) Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 23(4):759–769PubMedGoogle Scholar
  104. Loudon R, Roberts RM (1967) Droplet expulsion from the respiratory tract. Am Rev Respir Dis 95(3):435–442PubMedGoogle Scholar
  105. Lux H, Hart D, Parker P, Klenner T (1996) Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Adv Exp Med Biol 416:201–211PubMedGoogle Scholar
  106. Luxon B, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24(9):1363–1383PubMedGoogle Scholar
  107. Mallipeddi R, Rohan LC (2010) Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomedicine 5:533–547PubMedGoogle Scholar
  108. McMill B (1960) The inhibition of leptomonads of the genus Leishmania in culture by antifungal antibiotics. Ann Trop Med Parasitol 54:293Google Scholar
  109. Miceli M, Chandrasekar P (2012) Safety and efficacy of liposomal amphotericin B for the empirical therapy of invasive fungal infections in immunocompromised patients. Infect Drug Resist 5:9–16PubMedGoogle Scholar
  110. Michael K (2006) What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents 27(suppl 1):S12–S16Google Scholar
  111. Mirchandani H, Chien WY (1993) Drug delivery approaches for anti-HIV drugs. Int J Pharm 93:1–21Google Scholar
  112. Mitsutake K, Kohno S, Miyazaki Y, Noda T, Miyazaki H, Miyazaki T, Kaku M, Koga H, Hara K (1994) In vitro and in vivo antifungal activities of liposomal amphotericin B, and amphotericin B lipid complex. Mycopathologia 128(1):13–17PubMedGoogle Scholar
  113. Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69(3):361–392PubMedGoogle Scholar
  114. Mohamed-Ahmed AHA, Croft SL, Brocchini S (2012) Non-covalent complexation of amphotericin B with poly(glutamic acid). Mol Pharm 10(3):940–950Google Scholar
  115. Mohamed-Ahmed AHA, Seifert K, Yardley V, Burrell-Saward H, Brocchini S, Croft SL (2013) Anti-leishmanial activity, uptake and biodistribution of an amphotericin B - poly(α-glutamic acid) complex. Antimicrob Agents Chemother 57(10):4608–4614Google Scholar
  116. Mosqueira V, Loiseau P, Bories C, Legrand P, Devissaguet J, Barratt G (2004) Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 48(4):1222–1228PubMedGoogle Scholar
  117. Mosqueira V, Legrand P, Barratt G (2006) Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. J Nanosci Nanotechnol 6(9–10):3193–3202PubMedGoogle Scholar
  118. Mullaicharam A, Murthy R (2004) Lung accumulation of niosome-entrapped rifampicin following intravenous and intratracheal administration in the rat. J Drug Deliv Sci Technol 14(2):99–104Google Scholar
  119. Mullen AB, Carter KC, Baillie AJ (1997) Comparison of the efficacies of various formulations of amphotericin B against murine visceral leishmaniasis. Antimicrob Agents Chemother 41(10):2089–2092PubMedGoogle Scholar
  120. Mullen AB, Baillie AJ, Carter KC (1998) Visceral leishmaniasis in the BALB/c mouse: a comparison of the efficacy of a nonionic surfactant formulation of sodium stibogluconate with those of three proprietary formulations of amphotericin B. Antimicrob Agents Chemother 42(10):2722–2725PubMedGoogle Scholar
  121. Murthy N, Campbell J, Fausto N, Hoffman A, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14(2):412–419PubMedGoogle Scholar
  122. Nan A, Croft SL, Yardley V, Ghandehari H (2004) Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release 94:115–127PubMedGoogle Scholar
  123. Navin KV, Chinmoy SD (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48(8):3010–3015Google Scholar
  124. New RR, Chance ML (1980) Treatment of experimental cutaneous leishmaniasis by liposome-entrapped Pentostam. Acta Trop 37(3):253–256PubMedGoogle Scholar
  125. Ng AW, Wasan KM, Lopez-Berestein G (2003) Development of liposomal polyene antibiotics: an historical perspective. J Pharm Pharm Sci 1:67–83Google Scholar
  126. Nicoletti S, Seifert K, Gilbert IH (2009) N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents. Int J Antimicrob Agents 33(5):441–448PubMedGoogle Scholar
  127. Nuermberger E, Spigelman M, Yew WW (2010) Current development and future prospects in chemotherapy of tuberculosis. Respirology 15(5):764–778PubMedGoogle Scholar
  128. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37(3):415–425PubMedGoogle Scholar
  129. Pace H, Schantz SI (1956) Nystatin (mycostatin) in the treatment of monilial and nonmonilial vaginitis. J Am Med Assoc 162(4):268–271PubMedGoogle Scholar
  130. Pandey R, Khuller GK (2004a) Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv 1(3):195–201PubMedGoogle Scholar
  131. Pandey R, Khuller GK (2004b) Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chemother 54(1):266–268PubMedGoogle Scholar
  132. Pandey R, Khuller GK (2007) Nanoparticle-based oral drug delivery system for an injectable antibiotic—streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 53(6):437–441PubMedGoogle Scholar
  133. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller G, Prasad B (2003) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52(6):981–986PubMedGoogle Scholar
  134. Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85(5–6):415–420PubMedGoogle Scholar
  135. Pappas P, Kauffman C, Perfect J, Johnson P, Kinsey D, Bamberger D, Hamill R, Sharkey P, Chapman S, Sobel JD (1995) Alopecia associated with fluconazole therapy. Ann Intern Med 123(5):354–357PubMedGoogle Scholar
  136. Pappas P, Kauffman C, Andes D, Benjamin D, Calandra T, Edwards J, Filler S, Fisher J, Kullberg B, Ostrosky-Zeichner L, Reboli A, Rex J, Walsh T, Sobel JD (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48(5):503–535PubMedGoogle Scholar
  137. Perfect J, Wright KA (1994) Amphotericin B lipid complex in the treatment of experimental cryptococcal meningitis and disseminated candidosis. J Antimicrob Chemother 33(1):73–81PubMedGoogle Scholar
  138. Perlin DS (2004) Amphotericin B cochleates: a vehicle for oral delivery. Curr Opin Investig Drugs 5(2):198–201PubMedGoogle Scholar
  139. Pfaller MA (1996) Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 22(suppl 2):S89–S94PubMedGoogle Scholar
  140. Pfaller M, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163PubMedGoogle Scholar
  141. Pfaller M, Ekema D, Gibbs D, Newell V, Meis J, Gould I, Fu W, Colombo A, Rodriguez-Noriega E (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45(6):1735–1745PubMedGoogle Scholar
  142. Ramadori G, Meier V (2001) Hepatitis C virus infection: 10 years after the discovery of the virus. Eur J Gastroenterol Hepatol 13(5):465–471PubMedGoogle Scholar
  143. Ray KW (2002) Global epidemiology and burden of hepatitis C. Microbes Infect 4(12):1219–1225Google Scholar
  144. Rex J, Nett J, Sugar A, Pappas P, van der Horst C, Edwards J, Washburn R, Scheld W, Karchmer A, Dine AP (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 331(20):1325–1330PubMedGoogle Scholar
  145. Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14(4):643–658PubMedGoogle Scholar
  146. Romano F, Ribera G, Giuliano M (1994) A study of a hospital cluster of systemic candidosis using DNA typing methods. Epidemiol Infect 112(2):393–398PubMedGoogle Scholar
  147. Romero LA, Morilla JM (2008) Drug delivery systems against leishmaniasis? still an open question. Expert Opin Drug Deliv 5(7):805–823PubMedGoogle Scholar
  148. Rosen H, Gretch DR (1999) Hepatitis C virus: current understanding and prospects for future therapies. Mol Med Today 5(9):393–399PubMedGoogle Scholar
  149. Ruhnke M, Schmidt-Westhausen A, Trautmann M (1997) In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41(3):575–577PubMedGoogle Scholar
  150. Ruhnke M, Hartwig K, Kofla G (2008) New options for treatment of candidaemia in critically ill patients. Clin Microbiol Infect 14(suppl 4):46–54PubMedGoogle Scholar
  151. Santangelo R, Paderu P, Delmas G, Chen Z, Mannino R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44(9):2356–2360PubMedGoogle Scholar
  152. Santos-Magalhaes N, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62(4–5):560–575PubMedGoogle Scholar
  153. Seale-Goldsmith M, Leary JF (2009) Nanobiosystems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):553–567PubMedGoogle Scholar
  154. Seleem M, Munusamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N (2009) Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob Agents Chemother 53(10):4270–4274PubMedGoogle Scholar
  155. Semis R, Mendlovic S, Polacheck I, Segal E (2011) Activity of an intralipid formulation of nystatin in murine systemic candidiasis. Int J Antimicrob Agents 38(4):336–340PubMedGoogle Scholar
  156. Sereno D, Philippe H, Isabelle M, Gérard C, Ali O, Jean-Loup L (2001) Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 45(7):2064–2069PubMedGoogle Scholar
  157. Sharma A, Sharma S, Khuller GK (2004) Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 54(4):761–766PubMedGoogle Scholar
  158. Shechter Y, Preciado-Patt L, Schreiber G, Fridkin M (2001) Prolonging the half-life of human interferon-alpha 2 in circulation: design, preparation, and analysis of (2-sulfo-9-fluorenylmethoxycarbonyl)7- interferon-alpha 2. Proc Natl Acad Sci USA 98(3):1212–1217PubMedGoogle Scholar
  159. Soto J, Buffet P, Grogl M, Berman J (1994) Successful treatment of Colombian cutaneous leishmaniasis with four injections of pentamidine. Am J Trop Med Hyg 50(1):107–111PubMedGoogle Scholar
  160. Stark JE (1967) Allergic pulmonary aspergillosis successfully treated with inhalations of nystatin. Report of a case. Dis Chest 51(1):96–99PubMedGoogle Scholar
  161. Strader D, Seeff LB (1996) The natural history of chronic hepatitis C infection. Eur J Gastroenterol Hepatol 8(4):324–328PubMedGoogle Scholar
  162. Stuart K, Brun R, Croft SL, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310PubMedGoogle Scholar
  163. Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278(27):25120–25132PubMedGoogle Scholar
  164. Sundar S, Chakravarty J (2010) Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis 2(2):159–166PubMedGoogle Scholar
  165. Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3(5):733–740PubMedGoogle Scholar
  166. Sundar S, More D, Singh N, Sharma S, Makharia A, Kumar P, Murray H (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31(4):1104–1107PubMedGoogle Scholar
  167. Sundar S, Sinha P, Rai M, Verma D, Nawin K, Alam S, Chakravarty J, Vaillant M, Verma N, Pandey K, Kumari P, Lal C, Arora R, Sharma B, Ellis S, Strub-Wourgaft N, Balasegaram M, Olliaro P, Das P, Modabber F (2011) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377(9764):477–486PubMedGoogle Scholar
  168. Tabata Y, Matsui Y, Uno K, Sokawa Y, Ikada Y (1999) Simple mixing of IFN with a polysaccharide having high liver affinity enables IFN to target to the liver. J Interferon Cytokine Res 19(3):287–292PubMedGoogle Scholar
  169. Tan S, He Y, Huang Y, Gale M Jr (2004) Strategies for hepatitis C therapeutic intervention: now and next. Curr Opin Pharmacol 4(5):465–470PubMedGoogle Scholar
  170. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N (2006) Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 46(2):235–243PubMedGoogle Scholar
  171. Taylor D, Shi S, Lai MM (2000) Hepatitis C virus and interferon resistance. Microbes Infect 2(14):1743–1756PubMedGoogle Scholar
  172. Thitinan S, McConville JT (2009) Interferon alpha delivery systems for the treatment of hepatitis C. Int J Pharm 369(1–2):121–135PubMedGoogle Scholar
  173. Thiyanaratnam J, Cohen P, Powell S (2010) Fluconazole-associated Stevens-Johnson syndrome. J Drugs Dermatol 9(10):1272–1275PubMedGoogle Scholar
  174. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555PubMedGoogle Scholar
  175. Trepo C, Meyrueix R, Maynard M, Rouzier R, Bourliere M, Donazzolo Y, Zarski J, Kravtzoff R (2006) Novel sustained release formulation of IFN alpha-2b improves tolerability and demonstrates potent viral load reduction in a phase I/II HCV clinical trial. J Clin Virol 36:24Google Scholar
  176. Tuite A, Mullick A, Gros P (2004) Genetic analysis of innate immunity in resistance to Candida albicans. Genes Immun 5(7):576–587PubMedGoogle Scholar
  177. Tumbarello M, Caldarola G, Tacconelli E, Morace G, Posteraro B, Cauda R, Ortona L (1996) Analysis of the risk factors associated with the emergence of azole resistant oral candidosis in the course of HIV infection. J Antimicrob Chemother 38(4):691–699PubMedGoogle Scholar
  178. Uchegbu FI (1999a) Parenteral drug delivery 1. Pharm J 263(7060):309–318Google Scholar
  179. Uchegbu FI (1999b) Parenteral drug delivery 2. Pharm J 263(7061):355–358Google Scholar
  180. Uchegbu IF, Florence AT (1995) Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 58(1):1–55Google Scholar
  181. Van Etten E, Van den Heuvel-de Groot C, Bakker-Woudenberg IA (1993) Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome) and fluconazole in the treatment of systemic candidosis in immunocompetent and leucopenic mice. J Antimicrob Chemother 32(5):723–739PubMedGoogle Scholar
  182. Van Etten E, Ten Kate M, Stearne L, Bakker-Woudenberg IA (1995) Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob Agents Chemother 39(9):1954–1958PubMedGoogle Scholar
  183. Vasir J, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59(8):718–728PubMedGoogle Scholar
  184. Vauthier C, Couvreur P (2007) Nanomedicines: a new approach for the treatment of serious diseases. J Biomed Nanotechnol 3:223–234Google Scholar
  185. Veerareddy PR, Vobalaboina V, Ali N (2009) Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target 17(2):140–147PubMedGoogle Scholar
  186. Venditto VJ, Szoka FC (2013) Cancer nanomedicines: So many papers and so few drugs. Adv Drug Del Rev 65:80–88Google Scholar
  187. Veronose MF (2009) PEGylated protein drugs: basic science and clinical applications, 1st edn. Birkhauser, BaselGoogle Scholar
  188. Vincent J, Anaissie E, Bruining H, Demajo W, el-Ebiary M, Haber J, Hiramatsu Y, Nitenberg G, Nystrom P, Pittet D, Rogers T, Sandven P, Sganga G, Schaller M, Solomkin J (1998) Epidemiology, diagnosis and treatment of systemic Candida infection in surgical patients under intensive care. Intensive Care Med 24(3):206–216PubMedGoogle Scholar
  189. Von Mach M, Burhenne J, Weilemann LS (2006) Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 6:6Google Scholar
  190. Voss A, Hollis R, Pfaller M, Wenzel R, Doebbeling BN (1994) Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol 32(4):975–980PubMedGoogle Scholar
  191. Wagner A, Vorauer-Uhl K, Katinger H (2002) Liposomes produced in a pilot scale: production, purification and efficiency aspects. Eur J Pharm Biopharm 54(2):213–219PubMedGoogle Scholar
  192. Walsh T, Viviani M, Arathoon E, Chiou C, Ghannoum M, Groll A, Odds FC (2000) New targets and delivery systems for antifungal therapy. Med Mycol 38(suppl 1):335–347PubMedGoogle Scholar
  193. Warr G, Sljivic VS (1974) Origin and division of liver macrophages during stimulation of the mononuclear phagocyte system. Cell Tissue Kinet 7(6):559–565PubMedGoogle Scholar
  194. Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR, Clement JG, Thornton SJ, Wasan KM (2010) A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral leishmaniasis in a murine model. PLoS Negl Trop Dis 4(12):e913PubMedGoogle Scholar
  195. WHO (2010) Treatment of tuberculosis guidelines, 4th edn. WHO, Rome, Italy 2005, (WHO/CDS/NTD/IDM/2007.4) http://www.who.int/neglected_diseases/resources/AmBisomeReport.pdf
  196. Winstanley P, Ward S (2006) Malaria chemotherapy. Adv Parasitol 61:47–76PubMedGoogle Scholar
  197. Wyllie S, Cunningham ML, Fairlamb AH (2004) Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 279(38):39925–39932PubMedGoogle Scholar
  198. Zaoutis T (2010) Candidemia in children. Curr Med Res Opin 26(7):1761–1768PubMedGoogle Scholar
  199. Zarif L (2005) Drug delivery by lipid cochleates. Methods Enzymol 391:314–329PubMedGoogle Scholar
  200. Zarif L, Graybill J, Perlin D, Najvar L, Bocanegra R, Mannino RJ (2000) Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44(6):1463–1469PubMedGoogle Scholar
  201. Zeuzem S, Feinman S, Rasenack J, Heathcote E, Lai M, Gane E, O’Grady J, Reichen J, Diago M, Lin A, Hoffman J, Brunda MJ (2000) Peginterferon alfa-2a in patients with chronic hepatitis C. N Engl J Med 343(23):1666–1672PubMedGoogle Scholar
  202. Zilberstein D (1993) Transport of nutrients and ions across membranes of trypanosomatid parasites. Adv Parasitol 32:261–291PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abeer H. A. Mohamed-Ahmed
    • 1
    • 2
  • Claire Ginn
    • 1
  • Simon L. Croft
    • 3
  • Stephen Brocchini
    • 1
    • 2
  1. 1.UCL School of PharmacyUniversity College LondonLondonUK
  2. 2.NIHR Biomedical Research Centre and UCL PartnersMoorfields Eye Hospital and UCL Institute of OphthalmologyLondonUK
  3. 3.Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK

Personalised recommendations