Skip to main content

Anti-infectives

  • Chapter
  • First Online:
Fundamentals of Pharmaceutical Nanoscience

Abstract

Infectious diseases caused by viruses, bacteria, fungi and parasites are becoming a major health concern worldwide. Several serious diseases such as leishmaniasis, malaria, tuberculosis, hepatitis C and human immunodeficiency virus are caused by intracellular pathogens. Fatal systemic infection, e.g. invasive candidiasis, is caused by extracellular fungi. Delivery systems that can target these intracellular or extracellular pathogens can be effective in curing these diseases. Over the last 20 years, several nano-sized delivery systems have shown to be a potential tool for targeting drugs to the site of infection. There are many clinically used nanomedicines for the treatment of infectious diseases such as liposomes (e.g. AmBisome®) and protein-polymer conjugates (e.g. Intron® A). In addition numerous preclinical nano-delivery systems, e.g. polymeric nanoparticles, drug–polymer conjugates and complexes, dendrimers, lipid nanoparticles, cochleates and niosomes have been investigated for delivery of anti-infective agents. In this chapter, a description of these delivery systems, examples of infectious diseases and the rationale of using these delivery systems to treat certain infections will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ML, Andes RD, Kwon SG (2003) Amphotericin B encapsulated in micelles based on poly (ethylene oxide)-block-poly (L-amino acid) derivatives exerts reduced in vitro haemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750–757

    PubMed  CAS  Google Scholar 

  • Adler-Moore JP, Proffitt RT (2008) Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 14(suppl 4):25–36

    PubMed  CAS  Google Scholar 

  • Adler-Moore J, Chiang S, Satorius A, Guerra D, McAndrews B, Manus E, Proffitt RT (1991) Treatment of murine candidosis and cryptococcosis with a unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother 28(suppl B):63–71

    PubMed  CAS  Google Scholar 

  • Agrawal A, Singhal A, Gupta CM (1987) Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun 148(1):357–361

    PubMed  CAS  Google Scholar 

  • Ahsan F, Rivas IP, Khan MA, Torres Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release 19(1–3):29–40

    Google Scholar 

  • Alconcel SBAS, Maynard HD (2011) FDA approved poly(ethylene glycol)-protein conjugate drugs. Polym Chem 2:1442–1448

    CAS  Google Scholar 

  • Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112(18):2993–3002

    PubMed  CAS  Google Scholar 

  • Alvar J, Croft SL, Olliaro P (2006) Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol 61:223–274

    PubMed  Google Scholar 

  • Alving C, Steck EA, Chapman W, Waits V, Hendricks L, Swartz G, Hanson WL (1978) Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA 75(6):2959–2963

    PubMed  CAS  Google Scholar 

  • Anaissie E, Darouiche R, Abi-Said D, Uzun O, Mera J, Gentry L, Williams T, Kontoyiannis D, Karl C, Bodey GP (1996) Management of invasive candidal infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis 23(5):964–972

    PubMed  CAS  Google Scholar 

  • Arikan S, Rex JH (2001) Nystatin LF (Aronex/Abbott). Curr Opin Investig Drugs 2(4):488–495

    PubMed  CAS  Google Scholar 

  • Armstead A, Li B (2011) Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 6:3281–3293

    PubMed  CAS  Google Scholar 

  • Badiee P, Alborzi A (2011) Invasive fungal infections in renal transplant recipients. Exp Clin Transplant 9(6):355–362

    PubMed  Google Scholar 

  • Bain V, Kaita K, Yoshida E, Swain M, Heathcote E, Neumann A, Fiscella M, Yu R, Osborn B, Cronin P, Freimuth W, Hutchison J, Subramanian GM (2006) A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon alfa fusion protein in genotype 1 chronic hepatitis C patients. J Hepatol 44(4):671–678

    PubMed  CAS  Google Scholar 

  • Balan V, Nelson D, Sulkowski M, Everson G, Lambiase L, Wiesner R, Dickson R, Post A, Redfield R, Davis G, Neumann A, Osborn B, Freimuth W, Subramanian GM (2006) A phase I/II study evaluating escalating doses of recombinant human albumin-interferon-alpha fusion protein in chronic hepatitis C patients who have failed previous interferon-alpha-based therapy. Antivir Ther 11(1):35–45

    PubMed  CAS  Google Scholar 

  • Banerjee G, Nandi G, Mahato SB, PAKRASHI A, Basu MK (1996) Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 38(1):145–150

    PubMed  CAS  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60(1):21–37

    PubMed  CAS  Google Scholar 

  • Bassetti M, Blasi E, Giarratano A, DE Rosa F, Balzano L, Viscoli C (2011) Low dosage liposomal amphotericin B in the treatment of Candida infections in critically ill patients. J Chemother 23(4):242

    PubMed  CAS  Google Scholar 

  • Basu MK, Lala S (2004) Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med 4(6):681–689

    PubMed  CAS  Google Scholar 

  • Bates LP (1994) The developmental biology of leishmania promastigotes. Exp Parasitol 79(2):215–218

    PubMed  CAS  Google Scholar 

  • Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37(10):1097–1106

    PubMed  CAS  Google Scholar 

  • Bern C, Adler-Moore J, Berenguer J, Boelaert M, den Boer M, Davidson RN, Figueras C, Gradoni L, Kafetzis DA, Ritmeijer K, Rosenthal E, Royce C, Russo R, Sundar S, Alvar J (2006) Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 43(7):917–924

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Sinha PK, Sundar S, Thakur CP, Jha TK, Pandey K, Das VR, Kumar N, Lal C, Verma N, Singh VP, Ranjan A, Verma RB, Anders G, Sindermann H, Ganguly NK (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196(4):591–598

    PubMed  CAS  Google Scholar 

  • Bohme A, Ruhnke M, Buchheidt D, Cornely O, Einsele H, Enzensberger R, Hebart H, Heinz W, Junghanss C, Karthaus M, Kruger W, Krug U, Kubin T, Penack O, Reichert D, Reuter S, Silling G, Sudhoff T, Ullmann A, Maschmeyer G (2009) Treatment of invasive fungal infections in cancer patients—recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 88(2):97–110

    PubMed  Google Scholar 

  • Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9(4):512–531

    PubMed  CAS  Google Scholar 

  • Bray PG, Barrett MP, Ward SA, de Koning HP (2003) Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 19(5):232–239

    PubMed  CAS  Google Scholar 

  • Brighenti S, Andersson J (2012) Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 3(suppl 2):S316–S324

    Google Scholar 

  • Briones E, Colino C, Lanao JM (2008) Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 125(3):210–227

    PubMed  CAS  Google Scholar 

  • Brown R, Hazen EL (1957) Present knowledge of nystatin, an antifungal antibiotic. Trans N Y Acad Sci 19(5):447–456

    PubMed  CAS  Google Scholar 

  • Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6(11):928–934

    PubMed  CAS  Google Scholar 

  • Buates S, Matlashewski G (1999) Treatment of experimental leishmaniasis with the immunomodulators imiquimod and S-28463: efficacy and mode of action. J Infect Dis 179:1485–1494

    PubMed  CAS  Google Scholar 

  • Burchmore JSR, Barrett PM (2001) Life in vacuoles- nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31:1311–1320

    PubMed  CAS  Google Scholar 

  • Carter KC, Baillie AJ, Mullen AB (1999) The cured immune phenotype achieved by treatment of visceral leishmaniasis in the BALB/c mouse with a nonionic surfactant vesicular formulation of sodium stibogluconate does not protect against reinfection. Clin Diagn Lab Immunol 6(1):61–65

    PubMed  CAS  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control. Nat Rev Microbiol 5:S7–S16

    CAS  Google Scholar 

  • Chaudhari K, Ukawala M, Manjappa A, Kumar A, Mundada P, Mishra A, Mathur R, Monkkonen J, Murthy RS (2012) Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res 29(1):53–68

    PubMed  CAS  Google Scholar 

  • Chunge CN, Owate J, Pamba HO, Donno L (1990) Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg 84(2):221–225

    PubMed  CAS  Google Scholar 

  • Clark J, Whitney R, Olsen S, George R, Swerdel M, Kunselman L, Bonner DP (1991) Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother 35(4):615–621

    PubMed  CAS  Google Scholar 

  • Coltel N, Combes V, Hunt N, Grau GE (2004) Cerebral malaria: a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 1(2):91–110

    PubMed  Google Scholar 

  • Conover DC, Zahao H, Longley BC, Shum LK, Greenwald BR (2003) Utility of poly(ethyleneglycol) conjugation to create prodrugs of amphotericin B. Bioconjug Chem 14:661–666

    PubMed  CAS  Google Scholar 

  • Croft SL, Coombs HG (2003) Leishmaniasis—current chemotherapy and recent advances in the search of novel drugs. Trends Parasitol 19:502–508

    PubMed  CAS  Google Scholar 

  • Croft SL, Yardley V (2002) Chemotherapy of leishmaniasis. Curr Pharm Des 8:273–302

    Google Scholar 

  • Croft SL, Neal R, Pendergast W, Chan JH (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36(16):2633–2636

    PubMed  CAS  Google Scholar 

  • Das S, Pandey K, Singh T, Topno R, Singh D, Verma R, Ranjan A, Sinha P, Das P (2009) A controlled, randomized nonblinded clinical trial to assess the efficacy of amphotericin B deoxycholate as compared to pentamidine for the treatment of antimony unresponsive visceral leishmaniasis cases in Bihar, India. Ther Clin Risk Manag 5(1):117–124

    PubMed  CAS  Google Scholar 

  • Dasgupta D, Chakraborty P, Basu MK (2000) Ligation of Fc receptor of macrophages stimulates protein kinase C and anti-leishmanial activity. Mol Cell Biochem 209(1–2):1–8

    PubMed  CAS  Google Scholar 

  • Date A, Joshi M, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59(6):505–521

    PubMed  CAS  Google Scholar 

  • Davidson RN, den Boer M, Ritmeijer K (2009) Paromomycin. Trans R Soc Trop Med Hyg 103(7):653–660

    PubMed  CAS  Google Scholar 

  • Deol P, Khuller G, Joshi K (1997) Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob Agents Chemother 41(6):1211–1214

    PubMed  CAS  Google Scholar 

  • Desjardins M, Griffiths G (2003) Phagocytosis: latex leads the way. Curr Opin Cell Biol 15(4):498–503

    PubMed  CAS  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27(5):305–318

    PubMed  CAS  Google Scholar 

  • du Toit L, Pillay V, Danckwerts MP (2006) Tuberculosis chemotherapy: current drug delivery approaches. Respir Res 7:118

    PubMed  Google Scholar 

  • Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22(4):492–501

    PubMed  CAS  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141

    PubMed  CAS  Google Scholar 

  • Durand R, Paul M, Rivollet D, Fessi H, Houin R, Astier A, Deniau M (1997a) Activity of pentamidine-loaded poly (D, L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite 4(4):331–336

    PubMed  CAS  Google Scholar 

  • Durand R, Paul M, Rivollet D, Houin R, Astier A, Deniau M (1997b) Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int J Parasitol 27(11):1361–1367

    PubMed  CAS  Google Scholar 

  • Eggimann P, Garbino J, Pittet D (2003a) Management of Candida species infections in critically ill patients. Lancet Infect Dis 3(12):772–785

    PubMed  CAS  Google Scholar 

  • Eggimann P, Garbino J, Pittet D (2003b) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3(11):685–702

    PubMed  Google Scholar 

  • El-Ridy M, Mostafa D, Shehab A, Nasr E, Abd El-Alim S (2007) Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int J Pharm 330(1–2):82–88

    PubMed  CAS  Google Scholar 

  • Espuelas S, Legrand P, Loiseau P, Bories C, Barratt G, Irache J (2000) In vitro reversion of amphotericin B resistance in Leishmania donovani by Poloxamer 188. Antimicrob Agents Chemother 44(8):2190–2192

    PubMed  CAS  Google Scholar 

  • Espuelas M, Legrand P, Campanero M, Appel M, Cheron M, Gamazo C, Barratt G, Irache JM (2003) Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 52(3):419–427

    PubMed  CAS  Google Scholar 

  • Falk R, Domb AJ, Polacheck I (1999) A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother 43(8):1975–1981

    PubMed  CAS  Google Scholar 

  • Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239(4840):617–622

    PubMed  CAS  Google Scholar 

  • Feld J, Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436(7053):967–972

    PubMed  CAS  Google Scholar 

  • Firpi RD, Nelson DR (2007) Current and future hepatitis C therapies. Arch Med Res 38(6):678–690

    PubMed  CAS  Google Scholar 

  • Fukui H, Koike T, Nakagawa T, Saheki A, Sonoke S, Tomii Y, Seki J (2003) Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS), with commercial lipid-based formulations. Int J Pharm 267(1–2):101–112

    PubMed  CAS  Google Scholar 

  • Gallis H, Drew R, Pickard W (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329

    PubMed  CAS  Google Scholar 

  • Gardella F, Assi S, Simon F, Bogreau H, Eggelte T, Ba F, Foumane V, Henry M, Kientega P, Basco L, Trape J, Lalou R, Martelloni M, Desbordes M, Baragatti M, Briolant S, Almeras L, Pradines B, Fusai T, Rogier C (2008) Antimalarial drug use in general populations of tropical Africa. Malar J 7:124

    PubMed  Google Scholar 

  • Ghannoum M, Rice L (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12(4):501–517

    PubMed  CAS  Google Scholar 

  • Glue P, Fang J, Rouzier-Panis R, Raffanel C, Sabo R, Gupta S, Salfi M, Jacobs S (2000) Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther 68(5):556–567

    PubMed  CAS  Google Scholar 

  • Gold W, Stout H, Pagano JF, Donowick R (1956) Amphotericin A and B, antifungal antibiotics produced by a streptomycete. In vitro studies. Antibiot Ann 79:586

    Google Scholar 

  • Gonzalez-Juarrero M (2012) Immunity to TB and targets for immunotherapy. Immunotherapy 4(2):187–199

    PubMed  CAS  Google Scholar 

  • Goossens H (2009) Antibiotic consumption and link to resistance. Clin Microbiol Infect 15(suppl 3):12–15

    PubMed  CAS  Google Scholar 

  • Gotzsche P, Johansen HK (2002) Nystatin prophylaxis and treatment in severely immunodepressed patients. Cochrane Database Syst Rev (4):CD002033

    Google Scholar 

  • Grace M, Youngster S, Gitlin G, Sydor W, Xie L, Westreich L, Jacobs S, Brassard D, Bausch J, Bordens R (2001) Structural and biologic characterization of pegylated recombinant IFN-alpha2b. J Interferon Cytokine Res 21(12):1103–1115

    PubMed  CAS  Google Scholar 

  • Green PJ, Feizi T, Stoll MS, Thiel S, Prescott A, McConville MJ (1994) Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol 66(2):319–328

    PubMed  CAS  Google Scholar 

  • Greenwood B, Fidock D, Kyle D, Kappe S, Alonso P, Collins F, Duffy PE (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118(4):1266–1276

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 300(1–2):125–130

    PubMed  CAS  Google Scholar 

  • Groll A, Petraitis V, Petraitiene R, Field-Ridley A, Calendario M, Bacher J, Piscitelli S, Walsh TJ (1999) Safety and efficacy of multilamellar liposomal nystatin against disseminated candidiasis in persistently neutropenic rabbits. Antimicrob Agents Chemother 43(10):2463–2467

    PubMed  CAS  Google Scholar 

  • Grubb S, Murdoch C, Sudbery P, Saville S, Lopez-Ribot J, Thornhill MH (2008) Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun 76(10):4370–4377

    PubMed  CAS  Google Scholar 

  • Guerin P, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson AD (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2(8):494–501

    PubMed  Google Scholar 

  • Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ (2010) Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 62(4–5):518–531

    PubMed  CAS  Google Scholar 

  • Gupta U, Jain NK (2010) Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 62(4–5):478–490

    PubMed  CAS  Google Scholar 

  • Gupta S, Vyas SP (2007) Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. J Drug Target 15(3):206–217

    PubMed  CAS  Google Scholar 

  • Gupta S, Pal A, Vyas SP (2010) Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv 7(3):371–402

    PubMed  CAS  Google Scholar 

  • Guru PY, Agrawal AK, Singha UK, Singhal A, Gupta CM (1989) Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 245(1–2):204–208

    PubMed  CAS  Google Scholar 

  • Hajjeh R, Sofair A, Harrison L, Lyon G, Arthington-Skaggs B, Mirza S, Phelan M, Morgan J, Lee-Yang W, Ciblak M, Benjamin L, Sanza L, Huie S, Yeo S, Brandt M, Warnock DW (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42(4):1519–1527

    PubMed  Google Scholar 

  • Harris J, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    PubMed  CAS  Google Scholar 

  • Hirst DH, Jain S, Laing P, Genkin D, Gregoriadis G (2002) Preparation and properties of polysialylated interferon 2b. In: AAPS annual meeting, p 1056

    Google Scholar 

  • Husain S, Tollemar J, Dominguez E, Baumgarten K, Humar A, Paterson D, Wagener M, Kusne S, Singh N (2003) Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients: prospective, multicenter, case-controlled study. Transplantation 75(12):2023–2029

    PubMed  Google Scholar 

  • Irache JM, Salman HH, Gamazo C, Espuelas S (2008) Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 5(6):703–724

    PubMed  CAS  Google Scholar 

  • Jain C, Vyas SP (1995) Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 12(4):401–407

    PubMed  CAS  Google Scholar 

  • Jain JP, Jatana M, Chakrabarti A, Kumar N (2011) Amphotericin-B-loaded polymersomes formulation (PAMBO) based on (PEG)(3)-PLA copolymers: an in vivo evaluation in a murine model. Mol Pharm 8(1):204–212

    PubMed  CAS  Google Scholar 

  • Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128

    PubMed  CAS  Google Scholar 

  • Juliano R (2013) Nanomedicine: is the wave cresting. Nat Rev Drug Discovery 12(3):171–172

    Google Scholar 

  • Juster-Reicher A, Flidel-Rimon O, Amitay M, Even-Tov S, Shinwell E, Leibovitz E (2003) High-dose liposomal amphotericin B in the therapy of systemic candidiasis in neonates. Eur J Clin Microbiol Infect Dis 22(10):603–607

    PubMed  CAS  Google Scholar 

  • Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22(6):868–876

    PubMed  CAS  Google Scholar 

  • Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161(2):429–445

    PubMed  CAS  Google Scholar 

  • Kullberg BJ, Verweij P, Akova M, Rendrup M, Bille J, Calandra T, Cuenca-Estrella M, Herbrecht R, Jacobs F, Kalin M, Kibbler C, Lortholary O, Martino P, Meis J, Munoz P, Odds F, De Pauw B, Rex J, Roilides E, Rogers T, Ruhnke M, Ullmann A, Uzun O, Vandewoude K, Vincent J, Donnelly JP (2011) European expert opinion on the management of invasive candidiasis in adults. Clin Microbiol Infect 17(suppl 5):1–12

    PubMed  Google Scholar 

  • Kumar P, Asthana A, Dutta T, Jain NK (2006) Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 14(8):546–556

    PubMed  CAS  Google Scholar 

  • Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227

    PubMed  Google Scholar 

  • Larson J, Wallace T, Tyl R, Marr M, Myers C, Cossum PA (2000) The reproductive and developmental toxicity of the antifungal drug Nyotran (liposomal nystatin) in rats and rabbits. Toxicol Sci 53(2):421–429

    PubMed  CAS  Google Scholar 

  • Lawlor C, Kelly C, O’Leary S, O’Sullivan M, Gallagher P, Keane J, Cryan SA (2011) Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis (Edinb) 91(1):93–97

    CAS  Google Scholar 

  • Lindsay K, Trepo C, Heintges T, Shiffman M, Gordon S, Hoefs J, Schiff E, Goodman Z, Laughlin M, Yao R, Albrecht JK (2001) A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology 34(2):395–403

    PubMed  CAS  Google Scholar 

  • Longmuir K, Robertson R, Haynes S, Baratta J, Waring AJ (2006) Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 23(4):759–769

    PubMed  CAS  Google Scholar 

  • Loudon R, Roberts RM (1967) Droplet expulsion from the respiratory tract. Am Rev Respir Dis 95(3):435–442

    PubMed  CAS  Google Scholar 

  • Lux H, Hart D, Parker P, Klenner T (1996) Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Adv Exp Med Biol 416:201–211

    PubMed  CAS  Google Scholar 

  • Luxon B, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24(9):1363–1383

    PubMed  CAS  Google Scholar 

  • Mallipeddi R, Rohan LC (2010) Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomedicine 5:533–547

    PubMed  CAS  Google Scholar 

  • McMill B (1960) The inhibition of leptomonads of the genus Leishmania in culture by antifungal antibiotics. Ann Trop Med Parasitol 54:293

    Google Scholar 

  • Miceli M, Chandrasekar P (2012) Safety and efficacy of liposomal amphotericin B for the empirical therapy of invasive fungal infections in immunocompromised patients. Infect Drug Resist 5:9–16

    PubMed  CAS  Google Scholar 

  • Michael K (2006) What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents 27(suppl 1):S12–S16

    Google Scholar 

  • Mirchandani H, Chien WY (1993) Drug delivery approaches for anti-HIV drugs. Int J Pharm 93:1–21

    Google Scholar 

  • Mitsutake K, Kohno S, Miyazaki Y, Noda T, Miyazaki H, Miyazaki T, Kaku M, Koga H, Hara K (1994) In vitro and in vivo antifungal activities of liposomal amphotericin B, and amphotericin B lipid complex. Mycopathologia 128(1):13–17

    PubMed  CAS  Google Scholar 

  • Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69(3):361–392

    PubMed  CAS  Google Scholar 

  • Mohamed-Ahmed AHA, Croft SL, Brocchini S (2012) Non-covalent complexation of amphotericin B with poly(glutamic acid). Mol Pharm 10(3):940–950

    Google Scholar 

  • Mohamed-Ahmed AHA, Seifert K, Yardley V, Burrell-Saward H, Brocchini S, Croft SL (2013) Anti-leishmanial activity, uptake and biodistribution of an amphotericin B - poly(α-glutamic acid) complex. Antimicrob Agents Chemother 57(10):4608–4614

    Google Scholar 

  • Mosqueira V, Loiseau P, Bories C, Legrand P, Devissaguet J, Barratt G (2004) Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 48(4):1222–1228

    PubMed  CAS  Google Scholar 

  • Mosqueira V, Legrand P, Barratt G (2006) Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine. J Nanosci Nanotechnol 6(9–10):3193–3202

    PubMed  CAS  Google Scholar 

  • Mullaicharam A, Murthy R (2004) Lung accumulation of niosome-entrapped rifampicin following intravenous and intratracheal administration in the rat. J Drug Deliv Sci Technol 14(2):99–104

    Google Scholar 

  • Mullen AB, Carter KC, Baillie AJ (1997) Comparison of the efficacies of various formulations of amphotericin B against murine visceral leishmaniasis. Antimicrob Agents Chemother 41(10):2089–2092

    PubMed  CAS  Google Scholar 

  • Mullen AB, Baillie AJ, Carter KC (1998) Visceral leishmaniasis in the BALB/c mouse: a comparison of the efficacy of a nonionic surfactant formulation of sodium stibogluconate with those of three proprietary formulations of amphotericin B. Antimicrob Agents Chemother 42(10):2722–2725

    PubMed  CAS  Google Scholar 

  • Murthy N, Campbell J, Fausto N, Hoffman A, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14(2):412–419

    PubMed  CAS  Google Scholar 

  • Nan A, Croft SL, Yardley V, Ghandehari H (2004) Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release 94:115–127

    PubMed  CAS  Google Scholar 

  • Navin KV, Chinmoy SD (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48(8):3010–3015

    Google Scholar 

  • New RR, Chance ML (1980) Treatment of experimental cutaneous leishmaniasis by liposome-entrapped Pentostam. Acta Trop 37(3):253–256

    PubMed  CAS  Google Scholar 

  • Ng AW, Wasan KM, Lopez-Berestein G (2003) Development of liposomal polyene antibiotics: an historical perspective. J Pharm Pharm Sci 1:67–83

    Google Scholar 

  • Nicoletti S, Seifert K, Gilbert IH (2009) N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents. Int J Antimicrob Agents 33(5):441–448

    PubMed  CAS  Google Scholar 

  • Nuermberger E, Spigelman M, Yew WW (2010) Current development and future prospects in chemotherapy of tuberculosis. Respirology 15(5):764–778

    PubMed  Google Scholar 

  • Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37(3):415–425

    PubMed  CAS  Google Scholar 

  • Pace H, Schantz SI (1956) Nystatin (mycostatin) in the treatment of monilial and nonmonilial vaginitis. J Am Med Assoc 162(4):268–271

    PubMed  CAS  Google Scholar 

  • Pandey R, Khuller GK (2004a) Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv 1(3):195–201

    PubMed  CAS  Google Scholar 

  • Pandey R, Khuller GK (2004b) Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chemother 54(1):266–268

    PubMed  CAS  Google Scholar 

  • Pandey R, Khuller GK (2007) Nanoparticle-based oral drug delivery system for an injectable antibiotic—streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 53(6):437–441

    PubMed  CAS  Google Scholar 

  • Pandey R, Sharma A, Zahoor A, Sharma S, Khuller G, Prasad B (2003) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52(6):981–986

    PubMed  CAS  Google Scholar 

  • Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85(5–6):415–420

    PubMed  CAS  Google Scholar 

  • Pappas P, Kauffman C, Perfect J, Johnson P, Kinsey D, Bamberger D, Hamill R, Sharkey P, Chapman S, Sobel JD (1995) Alopecia associated with fluconazole therapy. Ann Intern Med 123(5):354–357

    PubMed  CAS  Google Scholar 

  • Pappas P, Kauffman C, Andes D, Benjamin D, Calandra T, Edwards J, Filler S, Fisher J, Kullberg B, Ostrosky-Zeichner L, Reboli A, Rex J, Walsh T, Sobel JD (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48(5):503–535

    PubMed  CAS  Google Scholar 

  • Perfect J, Wright KA (1994) Amphotericin B lipid complex in the treatment of experimental cryptococcal meningitis and disseminated candidosis. J Antimicrob Chemother 33(1):73–81

    PubMed  CAS  Google Scholar 

  • Perlin DS (2004) Amphotericin B cochleates: a vehicle for oral delivery. Curr Opin Investig Drugs 5(2):198–201

    PubMed  CAS  Google Scholar 

  • Pfaller MA (1996) Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 22(suppl 2):S89–S94

    PubMed  Google Scholar 

  • Pfaller M, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163

    PubMed  CAS  Google Scholar 

  • Pfaller M, Ekema D, Gibbs D, Newell V, Meis J, Gould I, Fu W, Colombo A, Rodriguez-Noriega E (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45(6):1735–1745

    PubMed  CAS  Google Scholar 

  • Ramadori G, Meier V (2001) Hepatitis C virus infection: 10 years after the discovery of the virus. Eur J Gastroenterol Hepatol 13(5):465–471

    PubMed  CAS  Google Scholar 

  • Ray KW (2002) Global epidemiology and burden of hepatitis C. Microbes Infect 4(12):1219–1225

    Google Scholar 

  • Rex J, Nett J, Sugar A, Pappas P, van der Horst C, Edwards J, Washburn R, Scheld W, Karchmer A, Dine AP (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 331(20):1325–1330

    PubMed  CAS  Google Scholar 

  • Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14(4):643–658

    PubMed  CAS  Google Scholar 

  • Romano F, Ribera G, Giuliano M (1994) A study of a hospital cluster of systemic candidosis using DNA typing methods. Epidemiol Infect 112(2):393–398

    PubMed  CAS  Google Scholar 

  • Romero LA, Morilla JM (2008) Drug delivery systems against leishmaniasis? still an open question. Expert Opin Drug Deliv 5(7):805–823

    PubMed  CAS  Google Scholar 

  • Rosen H, Gretch DR (1999) Hepatitis C virus: current understanding and prospects for future therapies. Mol Med Today 5(9):393–399

    PubMed  CAS  Google Scholar 

  • Ruhnke M, Schmidt-Westhausen A, Trautmann M (1997) In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41(3):575–577

    PubMed  CAS  Google Scholar 

  • Ruhnke M, Hartwig K, Kofla G (2008) New options for treatment of candidaemia in critically ill patients. Clin Microbiol Infect 14(suppl 4):46–54

    PubMed  CAS  Google Scholar 

  • Santangelo R, Paderu P, Delmas G, Chen Z, Mannino R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44(9):2356–2360

    PubMed  CAS  Google Scholar 

  • Santos-Magalhaes N, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62(4–5):560–575

    PubMed  CAS  Google Scholar 

  • Seale-Goldsmith M, Leary JF (2009) Nanobiosystems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):553–567

    PubMed  CAS  Google Scholar 

  • Seleem M, Munusamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N (2009) Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob Agents Chemother 53(10):4270–4274

    PubMed  CAS  Google Scholar 

  • Semis R, Mendlovic S, Polacheck I, Segal E (2011) Activity of an intralipid formulation of nystatin in murine systemic candidiasis. Int J Antimicrob Agents 38(4):336–340

    PubMed  CAS  Google Scholar 

  • Sereno D, Philippe H, Isabelle M, Gérard C, Ali O, Jean-Loup L (2001) Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 45(7):2064–2069

    PubMed  CAS  Google Scholar 

  • Sharma A, Sharma S, Khuller GK (2004) Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 54(4):761–766

    PubMed  CAS  Google Scholar 

  • Shechter Y, Preciado-Patt L, Schreiber G, Fridkin M (2001) Prolonging the half-life of human interferon-alpha 2 in circulation: design, preparation, and analysis of (2-sulfo-9-fluorenylmethoxycarbonyl)7- interferon-alpha 2. Proc Natl Acad Sci USA 98(3):1212–1217

    PubMed  CAS  Google Scholar 

  • Soto J, Buffet P, Grogl M, Berman J (1994) Successful treatment of Colombian cutaneous leishmaniasis with four injections of pentamidine. Am J Trop Med Hyg 50(1):107–111

    PubMed  CAS  Google Scholar 

  • Stark JE (1967) Allergic pulmonary aspergillosis successfully treated with inhalations of nystatin. Report of a case. Dis Chest 51(1):96–99

    PubMed  CAS  Google Scholar 

  • Strader D, Seeff LB (1996) The natural history of chronic hepatitis C infection. Eur J Gastroenterol Hepatol 8(4):324–328

    PubMed  CAS  Google Scholar 

  • Stuart K, Brun R, Croft SL, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310

    PubMed  CAS  Google Scholar 

  • Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278(27):25120–25132

    PubMed  CAS  Google Scholar 

  • Sundar S, Chakravarty J (2010) Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis 2(2):159–166

    PubMed  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3(5):733–740

    PubMed  CAS  Google Scholar 

  • Sundar S, More D, Singh N, Sharma S, Makharia A, Kumar P, Murray H (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31(4):1104–1107

    PubMed  CAS  Google Scholar 

  • Sundar S, Sinha P, Rai M, Verma D, Nawin K, Alam S, Chakravarty J, Vaillant M, Verma N, Pandey K, Kumari P, Lal C, Arora R, Sharma B, Ellis S, Strub-Wourgaft N, Balasegaram M, Olliaro P, Das P, Modabber F (2011) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377(9764):477–486

    PubMed  CAS  Google Scholar 

  • Tabata Y, Matsui Y, Uno K, Sokawa Y, Ikada Y (1999) Simple mixing of IFN with a polysaccharide having high liver affinity enables IFN to target to the liver. J Interferon Cytokine Res 19(3):287–292

    PubMed  CAS  Google Scholar 

  • Tan S, He Y, Huang Y, Gale M Jr (2004) Strategies for hepatitis C therapeutic intervention: now and next. Curr Opin Pharmacol 4(5):465–470

    PubMed  CAS  Google Scholar 

  • Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N (2006) Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 46(2):235–243

    PubMed  CAS  Google Scholar 

  • Taylor D, Shi S, Lai MM (2000) Hepatitis C virus and interferon resistance. Microbes Infect 2(14):1743–1756

    PubMed  CAS  Google Scholar 

  • Thitinan S, McConville JT (2009) Interferon alpha delivery systems for the treatment of hepatitis C. Int J Pharm 369(1–2):121–135

    PubMed  CAS  Google Scholar 

  • Thiyanaratnam J, Cohen P, Powell S (2010) Fluconazole-associated Stevens-Johnson syndrome. J Drugs Dermatol 9(10):1272–1275

    PubMed  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    PubMed  CAS  Google Scholar 

  • Trepo C, Meyrueix R, Maynard M, Rouzier R, Bourliere M, Donazzolo Y, Zarski J, Kravtzoff R (2006) Novel sustained release formulation of IFN alpha-2b improves tolerability and demonstrates potent viral load reduction in a phase I/II HCV clinical trial. J Clin Virol 36:24

    Google Scholar 

  • Tuite A, Mullick A, Gros P (2004) Genetic analysis of innate immunity in resistance to Candida albicans. Genes Immun 5(7):576–587

    PubMed  CAS  Google Scholar 

  • Tumbarello M, Caldarola G, Tacconelli E, Morace G, Posteraro B, Cauda R, Ortona L (1996) Analysis of the risk factors associated with the emergence of azole resistant oral candidosis in the course of HIV infection. J Antimicrob Chemother 38(4):691–699

    PubMed  CAS  Google Scholar 

  • Uchegbu FI (1999a) Parenteral drug delivery 1. Pharm J 263(7060):309–318

    Google Scholar 

  • Uchegbu FI (1999b) Parenteral drug delivery 2. Pharm J 263(7061):355–358

    Google Scholar 

  • Uchegbu IF, Florence AT (1995) Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 58(1):1–55

    CAS  Google Scholar 

  • Van Etten E, Van den Heuvel-de Groot C, Bakker-Woudenberg IA (1993) Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome) and fluconazole in the treatment of systemic candidosis in immunocompetent and leucopenic mice. J Antimicrob Chemother 32(5):723–739

    PubMed  Google Scholar 

  • Van Etten E, Ten Kate M, Stearne L, Bakker-Woudenberg IA (1995) Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob Agents Chemother 39(9):1954–1958

    PubMed  Google Scholar 

  • Vasir J, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59(8):718–728

    PubMed  CAS  Google Scholar 

  • Vauthier C, Couvreur P (2007) Nanomedicines: a new approach for the treatment of serious diseases. J Biomed Nanotechnol 3:223–234

    CAS  Google Scholar 

  • Veerareddy PR, Vobalaboina V, Ali N (2009) Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target 17(2):140–147

    PubMed  CAS  Google Scholar 

  • Venditto VJ, Szoka FC (2013) Cancer nanomedicines: So many papers and so few drugs. Adv Drug Del Rev 65:80–88

    CAS  Google Scholar 

  • Veronose MF (2009) PEGylated protein drugs: basic science and clinical applications, 1st edn. Birkhauser, Basel

    Google Scholar 

  • Vincent J, Anaissie E, Bruining H, Demajo W, el-Ebiary M, Haber J, Hiramatsu Y, Nitenberg G, Nystrom P, Pittet D, Rogers T, Sandven P, Sganga G, Schaller M, Solomkin J (1998) Epidemiology, diagnosis and treatment of systemic Candida infection in surgical patients under intensive care. Intensive Care Med 24(3):206–216

    PubMed  CAS  Google Scholar 

  • Von Mach M, Burhenne J, Weilemann LS (2006) Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy. BMC Clin Pharmacol 6:6

    Google Scholar 

  • Voss A, Hollis R, Pfaller M, Wenzel R, Doebbeling BN (1994) Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol 32(4):975–980

    PubMed  CAS  Google Scholar 

  • Wagner A, Vorauer-Uhl K, Katinger H (2002) Liposomes produced in a pilot scale: production, purification and efficiency aspects. Eur J Pharm Biopharm 54(2):213–219

    PubMed  CAS  Google Scholar 

  • Walsh T, Viviani M, Arathoon E, Chiou C, Ghannoum M, Groll A, Odds FC (2000) New targets and delivery systems for antifungal therapy. Med Mycol 38(suppl 1):335–347

    PubMed  CAS  Google Scholar 

  • Warr G, Sljivic VS (1974) Origin and division of liver macrophages during stimulation of the mononuclear phagocyte system. Cell Tissue Kinet 7(6):559–565

    PubMed  CAS  Google Scholar 

  • Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR, Clement JG, Thornton SJ, Wasan KM (2010) A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral leishmaniasis in a murine model. PLoS Negl Trop Dis 4(12):e913

    PubMed  Google Scholar 

  • WHO (2010) Treatment of tuberculosis guidelines, 4th edn. WHO, Rome, Italy 2005, (WHO/CDS/NTD/IDM/2007.4) http://www.who.int/neglected_diseases/resources/AmBisomeReport.pdf

  • Winstanley P, Ward S (2006) Malaria chemotherapy. Adv Parasitol 61:47–76

    PubMed  Google Scholar 

  • Wyllie S, Cunningham ML, Fairlamb AH (2004) Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 279(38):39925–39932

    PubMed  CAS  Google Scholar 

  • Zaoutis T (2010) Candidemia in children. Curr Med Res Opin 26(7):1761–1768

    PubMed  CAS  Google Scholar 

  • Zarif L (2005) Drug delivery by lipid cochleates. Methods Enzymol 391:314–329

    PubMed  CAS  Google Scholar 

  • Zarif L, Graybill J, Perlin D, Najvar L, Bocanegra R, Mannino RJ (2000) Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44(6):1463–1469

    PubMed  CAS  Google Scholar 

  • Zeuzem S, Feinman S, Rasenack J, Heathcote E, Lai M, Gane E, O’Grady J, Reichen J, Diago M, Lin A, Hoffman J, Brunda MJ (2000) Peginterferon alfa-2a in patients with chronic hepatitis C. N Engl J Med 343(23):1666–1672

    PubMed  CAS  Google Scholar 

  • Zilberstein D (1993) Transport of nutrients and ions across membranes of trypanosomatid parasites. Adv Parasitol 32:261–291

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AMA and SB are grateful for funding from NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, Moorfields Special Trustees, the Helen Hamlyn Trust (in memory of Paul Hamlyn), Fight for Sight and Freemasons Grand Charity. SB is also grateful for funding from the UK Engineering & Physical Sciences Research Council (EPSRC) for the EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies. Financial support from the consortium of industrial and governmental users for the EPSRC Centre is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Brocchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohamed-Ahmed, A.H.A., Ginn, C., Croft, S.L., Brocchini, S. (2013). Anti-infectives. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_16

Download citation

Publish with us

Policies and ethics