Skip to main content

Biological Barriers: Transdermal, Oral, Mucosal, Blood Brain Barrier, and the Blood Eye Barrier

  • Chapter
  • First Online:

Abstract

Compartmentalisation is a precondition for the development of life, allowing concentration gradients to be maintained, facilitating selective transport of molecules, functional polarisation, protection of cells and tissues. Consequently, organisms have evolved highly sophisticated structures and mechanisms that allow compartmentalisation to be maintained and controlled in a highly regulated fashion.

Under normal conditions these compartmentalising structures are essential building blocks of life, their smooth functioning being central to our health. However, the same effectiveness that is a bonus under physiological conditions means the same structures may become considerable barriers to the pharmacotherapy of diseases, as access of drugs to the sites of disease may be severely restricted. This chapter describes the architecture, organisation, and function of key barriers that therapeutic nanoparticles may encounter for the most important routes of drug administration. The epithelial barriers (skin, mucosa of the airways, and gastrointestinal tract) and endothelial barriers share many commonalities as they all share key design elements that have evolved to support compartmentalisation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott NJ et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal P et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  PubMed  CAS  Google Scholar 

  • Aird WC (2005) Spatial and temporal dynamics of the endothelium. J Thromb Haemost 3(7):1392–1406

    Article  PubMed  CAS  Google Scholar 

  • Atuma C et al (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922–G929

    PubMed  CAS  Google Scholar 

  • Beck-Broichsitter M, Merkel OM, Kissel T (2012) Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 161(2):214–224

    Article  PubMed  CAS  Google Scholar 

  • Behrens I et al (2002) Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19(8):1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Beloqui A et al (2013) Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release 166(2):115–123

    Article  PubMed  CAS  Google Scholar 

  • Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85(1):97–104

    Article  PubMed  CAS  Google Scholar 

  • Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214(4):516–559

    Article  PubMed  CAS  Google Scholar 

  • Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10(17):1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Buda A, Sands C, Jepson MA (2005) Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv Drug Deliv Rev 57(1):123–134

    Article  PubMed  CAS  Google Scholar 

  • Bur M et al (2009) Inhalative nanomedicine—opportunities and challenges. Inhal Toxicol 21(s1):137–143

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Schatzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 1564(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  PubMed  CAS  Google Scholar 

  • Cu Y, Booth CJ, Saltzman WM (2011) In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J Control Release 156(2):258–264

    Article  PubMed  CAS  Google Scholar 

  • Danielsen EM, Hansen GH (2008) Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64(4):377–382

    Article  PubMed  CAS  Google Scholar 

  • Debbage P, Thurner GC (2010) Nanomedicine faces barriers. Pharmaceuticals 3(11):3371–3416

    Article  CAS  Google Scholar 

  • Delgado-Aros S et al (2002) Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 282(3):G424–G431

    PubMed  CAS  Google Scholar 

  • des Rieux A et al (2005) Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 25(4–5):455–465

    Article  PubMed  CAS  Google Scholar 

  • des Rieux A et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Devriendt B et al (2012) Crossing the barrier: targeting epithelial receptors for enhanced oral vaccine delivery. J Control Release 160(3):431–439

    Article  PubMed  CAS  Google Scholar 

  • Dolovich MB, Dhand R (2011) Aerosol drug delivery: developments in device design and clinical use. Lancet 377(9770):1032–1045

    Article  PubMed  CAS  Google Scholar 

  • Dreschers S et al (2007) The cold case: are rhinoviruses perfectly adapted pathogens? Cell Mol Life Sci 64(2):181–191

    Article  PubMed  CAS  Google Scholar 

  • Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570

    Article  PubMed  CAS  Google Scholar 

  • Florence AT et al (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36(1):39–46

    Article  CAS  Google Scholar 

  • Gabor F et al (2004) The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 56(4):459–480

    Article  PubMed  CAS  Google Scholar 

  • Garrett NL et al (2012) Exploring uptake mechanisms of oral nanomedicines using multimodal nonlinear optical microscopy. J Biophotonics 5(5–6):458–468

    Article  PubMed  CAS  Google Scholar 

  • Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23(4):207–217

    Article  PubMed  CAS  Google Scholar 

  • Gilbert B et al (2012) The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6(6):4921–4930

    Article  PubMed  CAS  Google Scholar 

  • Gravitz L (2012) Microbiome: the critters within. Nature 485(7398):S12–S13

    Article  PubMed  CAS  Google Scholar 

  • Ham AS et al (2009) Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 26(3):502–511

    Article  PubMed  CAS  Google Scholar 

  • Hillery AM, Jani PU, Florence AT (1994) Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 2(2):151–156

    Article  PubMed  CAS  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936

    Article  PubMed  CAS  Google Scholar 

  • Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 123(5):902–910

    Article  PubMed  CAS  Google Scholar 

  • Hunter AC et al (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Maturitas 73(1):5–18

    Article  PubMed  CAS  Google Scholar 

  • Hussain N, Jani PU, Florence AT (1997) Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res 14(5):613–618

    Article  PubMed  CAS  Google Scholar 

  • Illum L (2007) Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96(3):473–483

    Article  PubMed  CAS  Google Scholar 

  • Jani PU et al (1996) Biliary excretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteral administration to male Wistar rats. J Drug Target 4(2):87–93

    Article  PubMed  CAS  Google Scholar 

  • Janssens M et al (2011) Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J Invest Dermatol 131(10):2136–2138

    Article  PubMed  CAS  Google Scholar 

  • Kalgaonkar S, Lönnerdal B (2009) Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J Nutr Biochem 20(4):304–311

    Article  PubMed  CAS  Google Scholar 

  • Keating N, Keely SJ (2009) Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep 11(5):375–382

    Article  PubMed  Google Scholar 

  • Knupp C et al (2009) The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol 78:25–49

    Article  PubMed  CAS  Google Scholar 

  • Kreuter J et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20(3):409–416

    Article  PubMed  CAS  Google Scholar 

  • Lai SK et al (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104(5):1482–1487

    Article  PubMed  CAS  Google Scholar 

  • Lai SK et al (2009) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61(2):86–100

    Article  PubMed  CAS  Google Scholar 

  • Lai SK et al (2010) Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci USA 107(2):598–603

    Article  PubMed  CAS  Google Scholar 

  • Lalatsa A et al (2012) A prodrug nanoparticle approach for the oral delivery of hydrophilic peptides to the brain. Mol Pharm 9(6):1665–1680

    Article  PubMed  CAS  Google Scholar 

  • Lim C-J, Norouziyan F, Shen W-C (2007) Accumulation of transferrin in Caco-2 cells: a possible mechanism of intestinal transferrin absorption. J Control Release 122(3):393–398

    Article  PubMed  CAS  Google Scholar 

  • Madison KC et al (1987) Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol 88(6):714–718

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Mathot F et al (2007) Transport mechanisms of mmePEG750P(CL-co-TMC) polymeric micelles across the intestinal barrier. J Control Release 124(3):134–143

    Article  PubMed  CAS  Google Scholar 

  • McConnell RE et al (2009a) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(7):1285–1298

    Article  PubMed  CAS  Google Scholar 

  • McConnell EL, Liu F, Basit AW (2009b) Colonic treatments and targets: issues and opportunities. J Drug Target 17(5):335–363

    Article  PubMed  CAS  Google Scholar 

  • Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  Google Scholar 

  • Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Paulsen F (2006) Cell and molecular biology of human lacrimal gland and nasolacrimal duct mucins. Int Rev Cytol 249:229–279

    Article  PubMed  CAS  Google Scholar 

  • Phillipson M et al (2008) The gastric mucus layers: constituents and regulation of accumulation. Am J Physiol Gastrointest Liver Physiol 295(4):G806–G812

    Article  PubMed  CAS  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Prego C, Torres D, Alonso MJ (2005) The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv 2(5):843–854

    Article  PubMed  CAS  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  • Roger E et al (2009) Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release 140(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Schatzlein A, Cevc G (1998) Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (transfersomes). Br J Dermatol 138(4):583–592

    Article  PubMed  CAS  Google Scholar 

  • Schneider M et al (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1(4):197–206

    Article  PubMed  CAS  Google Scholar 

  • Siew A et al (2012) Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm 9(1):14–28

    Article  PubMed  CAS  Google Scholar 

  • Silbernagl S, Despopoulos A (2003) Color atlas of physiology, 5th edn, vol xiii. Flexibook. Stuttgart-New York: Thieme, p 248

    Google Scholar 

  • Smith AE, Helenius A (2004) How viruses enter animal cells. Science 304(5668):237–242

    Article  PubMed  CAS  Google Scholar 

  • Smith JM, Dornish M, Wood EJ (2005) Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials 26(16):3269–3276

    Article  PubMed  CAS  Google Scholar 

  • Sonaje K et al (2011) Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials 32(33):8712–8721

    Article  PubMed  CAS  Google Scholar 

  • Tasman W (2012) Duane’s ophthalmology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Tiffany JM (2003) Tears in health and disease. Eye 17(8):923–926

    Article  PubMed  CAS  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Varum FJ et al (2012) Mucus thickness in the gastrointestinal tract of laboratory animals. J Pharm Pharmacol 64(2):218–227

    Article  PubMed  CAS  Google Scholar 

  • Wang YY et al (2011) Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One 6(6):e21547

    Article  PubMed  CAS  Google Scholar 

  • Wilson CG (2010) The transit of dosage forms through the colon. Int J Pharm 395(1–2):17–25

    Article  PubMed  CAS  Google Scholar 

  • Woodrow KA et al (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 8(6):526–533

    Article  PubMed  CAS  Google Scholar 

  • Yu YJ et al (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3(84):84ra44

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G. Schätzlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marimuthu, P., Schätzlein, A.G. (2013). Biological Barriers: Transdermal, Oral, Mucosal, Blood Brain Barrier, and the Blood Eye Barrier. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_12

Download citation

Publish with us

Policies and ethics