Skip to main content

Drug Nanocrystals

  • Chapter
  • First Online:
Fundamentals of Pharmaceutical Nanoscience
  • 2867 Accesses

Abstract

Drug nanocrystals are nanosized particles, where the solid drug is covered with a stabilizer layer. Their main benefit is faster dissolution, but they are also used for increasing the bioavailability of drugs, which have narrow absorption window or suffer large differences in oral absorption between the fed and fasted states. Drug nanocrystals can be produced either by top-down (e.g., wet milling or high-pressure homogenization) or bottom-up (e.g., antisolvent precipitation) techniques. Compared to other nanotechnological approaches in medicine, drug nanocrystals are considerably simple to produce. Accordingly, pharmaceutical nanocrystals were first time presented in the beginning of the 1990s and already after 10 years the first commercial product was on market. First products were oral tablets, but nanocrystals have been utilized also for ocular, parenteral, dermal, pulmonary, and buccal drug delivery. The main problem with drug nanocrystals is their inherent instability, which can lead to unwanted aggregation, and the selection of a proper stabilizer is crucial for successful nanocrystal formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelwahed W, Degobert G, Fessi H (2006) A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int J Pharm 309:178–188

    Article  PubMed  CAS  Google Scholar 

  • Ali HSM, York P, Ali AMA, Blagden N (2011) Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 149:175–181

    Article  PubMed  CAS  Google Scholar 

  • Anhalt K, Geissler S, Harms M, Weigandt M, Fricker G (2012) Development of a new method to assess nanocrystal dissolution based on light scattering. Pharm Res 29:2887–2901

    Article  PubMed  CAS  Google Scholar 

  • Annapragada A, Adjei A (1996) Numerical simulation of milling processes as an aid to process design. Int J Pharm 136:1–11

    Article  CAS  Google Scholar 

  • Baba K, Pudavar HE, Roy I, Ohulchansky TY, Chan Y, Pandery RK, Prasad PN (2007) New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol Pharm 4:289–297

    Article  PubMed  CAS  Google Scholar 

  • Badia A, Cuccia L, Demers L, Morin F, Lennox RB (1997) Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: a DSC, FT-IR, and deuterium NMR study. J Am Chem Soc 119:2682–2692

    Article  CAS  Google Scholar 

  • Bansal S, Bansal M, Kumria R (2012) Nanocrystals: current strategies and trends. Int J Res Pharm Biomed Sci 3:406–419

    Google Scholar 

  • Bhol KC, Schechter PJ (2005) Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol 152:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Brodka-Pfeiffer K, Langguth P, Grass P, Häusler H (2003) Influence of mechanical activation on the physical stability of salbutamol sulphate. Eur J Pharm Biopharm 56:393–400

    Article  PubMed  CAS  Google Scholar 

  • Bruno RP, McIlwrick R (1999) Microfluidizer processor technology for high performance particle size reduction, mixing and dispersion. Eur J Pharm Biopharm 56:29–36

    Google Scholar 

  • Chaubal MV, Popescu C (2008) Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res 25:2302–2308

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Matteucci ME, Lo CY, Johnston KP, Williams RO III (2009) Flocculation of polymer stabilized nanocrystal suspensions to produce redispersible powders. Drug Dev Ind Pharm 35:283–296

    Article  PubMed  CAS  Google Scholar 

  • Chingunpituk J (2007) Nanosuspension technology for drug delivery. Walailak J Sci Technol 4:139–153

    Google Scholar 

  • Choi J-Y, Yoo JY, Kwak H-S, Nam BU, Lee J (2005) Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys 5:472–474

    Article  Google Scholar 

  • D’Addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 63:417–426

    Article  PubMed  Google Scholar 

  • Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:633

    Google Scholar 

  • Donini C, Robinson DN, Colombo P, Giordano F, Peppas NA (2002) Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int J Pharm 245:83–91

    Article  PubMed  CAS  Google Scholar 

  • Eerikäinen H, Watanabe W, Kauppinen EI, Ahonen PP (2003) Aerosol flow reactor method for synthesis of drug nanoparticles. Eur J Pharm Biopharm 55:357–360

    Article  PubMed  Google Scholar 

  • Fan YF, Wang YN, Fan YG, Ma JB (2006) Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm 324:158–167

    Article  PubMed  CAS  Google Scholar 

  • Farrokhpay S (2009) A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interface Sci 151:24–32

    Article  PubMed  CAS  Google Scholar 

  • Fuerstenau DW, Abouzeid A-ZM (2002) The energy efficiency of ball milling in comminution. Int J Miner Process 67:161–185

    Article  CAS  Google Scholar 

  • Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F (2013) Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res 30:307–324

    Article  PubMed  CAS  Google Scholar 

  • Grau MJ, Kayser O, Müller RH (2000) Nanosuspensions of poorly soluble drugs—reproducibility of small scale production. Int J Pharm 196:155–157

    Article  PubMed  CAS  Google Scholar 

  • Gubskaya AV, Lisnyak YV, Blagoy YP (1995) Effect of cryogrinding on physico-chemical properties of drugs. I. Theophylline: evaluation of particles sizes and the degree of crystallinity, relation to dissolution parameters. Drug Dev Ind Pharm 21:1953–1964

    Article  CAS  Google Scholar 

  • Gupta S, Samanta MK, Raichur AM (2010) Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy. AAPS PharmSciTech 11:322–335

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Wang X, Zhang D, Xu Q, Song S, Wang F, Li C, Guo H, Liu Y, Zheng D, Zhang Q (2012) Studies on the preparation, characterization and pharmacokinetics of amoitone B nanocrystals. Int J Pharm 433:157–164

    Article  PubMed  CAS  Google Scholar 

  • Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K (2005) Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 299:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hecq J, Deleers M, Fanara D, Vranckx H, Boulanger P, le Lamer S, Amighi K (2006) Preparation and in vitro/in vivo evaluation of nanosized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. Eur J Pharm Biopharm 64:360–368

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Trejo N, Kayser O, Steckel H, Müller RH (2005) Characterization of nebulized buparvaquone nanosuspensions—effect of nebulization technology. J Drug Target 13:499–507

    Article  PubMed  Google Scholar 

  • Hinrichs WLJ, Manceñido FA, Sanders NN, Braeckmans K, De Smedt SC, Demeester J, Frijlink HW (2006) The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying. Int J Pharm 311:237–244

    Article  PubMed  CAS  Google Scholar 

  • Hirsjärvi S, Peltonen L, Hirvonen J (2006) Layer-by-layer coating of low molecular weight poly(lactic acid) nanoparticles. Colloids Surf B Biointerfaces 49:93–99

    Article  PubMed  Google Scholar 

  • Junghanns J-UAH, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3:295–309

    PubMed  CAS  Google Scholar 

  • Kakran M, Shegokar R, Sahoo NG, Al Shaal L, Li L, Müller RH (2012) Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm 80:113–121

    Article  PubMed  CAS  Google Scholar 

  • Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430:253–257

    Article  PubMed  CAS  Google Scholar 

  • Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM (2007) Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 340:126–133

    Article  PubMed  CAS  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Article  PubMed  CAS  Google Scholar 

  • Kesisoglou F, Wu Y (2008) Understanding the effect of API properties on bioavailability through absorption modeling. AAPS J 10:516–525

    Article  PubMed  CAS  Google Scholar 

  • Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59:631–644

    Article  PubMed  CAS  Google Scholar 

  • Knieke C, Sommer M, Peukert W (2009) Identifying the apparent and true grinding limit. Powder Technol 195:25–30

    Article  CAS  Google Scholar 

  • Knieke C, Steiborn C, Romeis S, Peukert W, Breitung-Faes S, Kwade A (2010) Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol 33:1401–1411

    Article  CAS  Google Scholar 

  • Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312:179–186

    Article  PubMed  CAS  Google Scholar 

  • Laaksonen T, Liu P, Rahikkala A, Peltonen L, Kauppinen EI, Hirvonen J, Järvinen K, Raula J (2011) Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res 28:2403–2411

    Article  PubMed  CAS  Google Scholar 

  • Law SL, Kayes JP (1983) Adsorption of non-ionic water-soluble cellulose polymers at the solid-water interface and their effect on suspension stability. Int J Pharm 15:251–260

    Article  CAS  Google Scholar 

  • Lee J (2003) Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharm Sci 92:2057–2068

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee S-J, Choi J-Y, Yoo JY, Ahn C-H (2005) Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci 24:441–449

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Choi J-Y, Park CH (2008) Characteristics of polymers enabling nanocomminution of water-insoluble drugs. Int J Pharm 355:328–336

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Heng D, Ng WK, Chan H-K, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Rong X, Laru J, van Veen B, Kiesvaara J, Hirvonen J, Laaksonen T, Peltonen L (2011) Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm 411:215–222

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhang D, Jiao Y, Zheng D, Liu Y, Duan C, Jia L, Zhang Q, Lou H (2012) Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology. Int J Pharm 422:516–522

    Article  PubMed  CAS  Google Scholar 

  • Liu P, De Wulf O, Laru J, Heikkilä T, van Veen B, Kiesvaara J, Hirvonen J, Peltonen L, Laaksonen T (2013) Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech 14(2):748–56. doi:10.1208/s12249-013-9960-2

    Article  PubMed  CAS  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, Czekai DA (1992) Surface modified drug nanoparticles. USP patent 5145684

    Google Scholar 

  • Matijasic G, Zizek K, Glasnovic A (2008) Suspension rheology during wet comminution in planetary ball mill. Chem Eng Res Des 86:384–389

    Article  CAS  Google Scholar 

  • Matteucci ME, Hotze MA, Johnston KP, Williams RO (2006) Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22:8951–8959

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge G (2008) Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 36:43–48

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63:427–440

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw JM, Pugh S, Polin L, Jones J, Corbett T, Cooper E, Liversidge GG (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13:272–278

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, McGurk SL, Liversidge GG (2004) Insulin nanoparticles: a novel formulation approach for poorly water soluble Zn-insulin. Pharm Res 21:1545–1553

    Article  PubMed  CAS  Google Scholar 

  • Mishra PR, Al Shaal L, Müller RH, Keck CM (2009) Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189

    Article  PubMed  CAS  Google Scholar 

  • Moon HR, Urban JJ, Milliron DJ (2009) Size-controlled synthesis and optical properties of monodisperse colloidal magnesium oxide nanocrystals. Angew Chem Int Ed 48:6278–6281

    Article  CAS  Google Scholar 

  • Müller RH, Moschwitzer J (2007) Method and device for producing very fine particles and coating such particles. Patent WO/2007/051520

    Google Scholar 

  • Müller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9

    Article  PubMed  Google Scholar 

  • Na GC, Stevens HJ Jr, Yuan BO, Rajagopalan N (1999) Physical stability of ethyl diatrizoate nanocrystalline suspension in steam sterilization. Pharm Res 16:569–574

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Miura S, Danjo K (2011) Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies—development of particle design method. Int J Pharm 405:218–227

    Article  PubMed  CAS  Google Scholar 

  • Palla BJ, Shah DO (2002) Stabilization of high ionic strength slurries using surfactant mixtures: molecular factors that determine optimal stability. J Colloid Interface Sci 256:143–152

    Article  CAS  Google Scholar 

  • Parsons GE, Buckton G, Chatham SM (1992) The use of surface energy and polarity determinations to predict physical stability of non-polar non-aqueous suspension. Int J Pharm 83:163–170

    Article  CAS  Google Scholar 

  • Peltonen L, Hirvonen J (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 62:1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Peltonen L, Yliruusi J (2000) Surface pressure, hysteresis, interfacial tension, and CMC of four sorbitan monoesters at water-air, waterhexane, and hexane-air interfaces. J Colloid Interface Sci 227:1–6

    Article  PubMed  CAS  Google Scholar 

  • Peltonen L, Koistinen P, Karjalainen M, Häkkinen A, Hirvonen J (2002) The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech 3(4):52–58

    Article  Google Scholar 

  • Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J (2010) Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv 7:705–719

    Article  PubMed  CAS  Google Scholar 

  • Rabinow BE (2004) Nanosuspension in drug delivery. Nat Rev Drug Discov 3:785–796

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Song Y, Peddie F, Evans AM (2011) Particle size reduction to the nanometre range: a promising approach to improve buccal absorption of poorly water-soluble drugs. Int J Nanomedicine 6:1245–1251

    Article  PubMed  CAS  Google Scholar 

  • Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, New York

    Book  Google Scholar 

  • Sabnis S, Rege P, Block LH (1997) Use of chitosan in compressed tablets of diclofenac sodium: inhibition of drug release in an acidic environment. Pharm Dev Technol 2:243–255

    Article  PubMed  CAS  Google Scholar 

  • Shahgaldian P, Gualbert J, Aïssa K, Coleman AW (2003) A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur J Pharm Biopharm 55:181–184

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Denny WA, Garg S (2009) Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm 380:40–48

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman B (2007) The milling system. Patent no WO/2007/020407

    Google Scholar 

  • Sun W, Tian W, Zhang Y, He J, Mao S, Fang L (2012) Effect of stabilizers—cationic polymers on the particle size and physical stability of poorly soluble drug nanocrystals. Nanomedicine 8:460–467

    Article  PubMed  CAS  Google Scholar 

  • Swarbrick J, Boylan JS (eds) (2001) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York

    Google Scholar 

  • Tian F, Saville DJ, Gordon KC, Strachan CJ, Zeitler JA, Sandler N, Rades T (2007) The influence of various excipients on the conversion kinetics of carbamazepine polymorphs in aqueous suspension. J Pharm Pharmacol 59:193–201

    Article  PubMed  CAS  Google Scholar 

  • Valo HK, Laaksonen PH, Peltonen LJ, Linder MB, Hirvonen JT, Laaksonen TJ (2010) Multifunctional hydrophobic: toward functional coatings for drug nanoparticles. ACS Nano 4:1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—enhanced stability and release. J Control Release 156:390–397

    Article  PubMed  CAS  Google Scholar 

  • Van Eerdenbrugh B, Froyen L, Martens JA, Blaton N, Augustijns P, Brewster M, Van den Mooter G (2007) Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freezedried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm 338:198–206

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, Van den Mooter G (2008a) Drying of crystalline drug nanosuspensions—the importance of surface hydrophobicity on dissolution behaviour upon redispersion. Eur J Pharm Sci 35:127–135

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008b) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, Van den Mooter G (2009) A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci 98:2091–2103

    Article  PubMed  Google Scholar 

  • van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, van Humbeeck J, Van den Mooter G, Augustijns P (2010) Solubility increases associated with crystalline drug nanoparticles: methodologies and significance. Mol Pharm 7:1858–1870

    Article  PubMed  Google Scholar 

  • van Zyl AJP, de Wet-Roos D, Sanderson RD, Klumperman B (2004) The role of surfactant in controlling particle size and stability in the miniemulsion polymerization of polymeric nanocapsules. Eur Polym J 40:2717–2725

    Article  Google Scholar 

  • Verma S, Gokhale R, Burgess DJ (2009a) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380:216–222

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Huey BD, Burgess DJ (2009b) Scanning probe microscopy method for nanosuspension stabilizer selection. Langmuir 25:12481–12487

    Article  PubMed  CAS  Google Scholar 

  • Verwey EJW, Overbeek JTG (1946) Long distance forces acting between colloidal particles. Trans Faraday Soc 42B:117–123

    Article  CAS  Google Scholar 

  • Wang M, Rutledge GC, Myerson AS, Trout BL (2012a) Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing. J Pharm Sci 101:1178–1188

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ma Y, Ma Y, Du Y, Liu Z, Zhang D, Zhang Q (2012b) Formulation and pharmacokinetics evaluation of puerarin nanocrystals for intravenous delivery. J Nanosci Nanotechnol 12:6176–6184

    Article  PubMed  Google Scholar 

  • Yegin BA, Lamprecht A (2006) Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy. Int J Pharm 320:165–170

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu L, Chan H-K, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63:441–455

    Article  PubMed  CAS  Google Scholar 

  • Zheng JY, Bosch HW (1997) Sterile filtration of NanoCrystalâ„¢ drug formulations. Drug Dev Ind Pharm 23:1087–1093

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Peltonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peltonen, L. (2013). Drug Nanocrystals. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_11

Download citation

Publish with us

Policies and ethics