Characteristics of the Explosive Percolation Transition

  • R. A. da Costa
  • S. N. Dorogovtsev
  • A. V. Goltsev
  • J. F. F. Mendes
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 57)


An unusual phase transition was recently discovered in a bunch of evolving network models in which each new connection between nodes is selected from several possibilities by an optimization algorithm. First studies (simulations) of these systems interpreted the emergence of a percolation cluster (giant connected component) as a discontinuous phase transition, and so the transition was said to be “explosive.” We have shown, however, that this transition is actually continuous but with uniquely small critical exponent of the percolation cluster size. Here we propose an efficient method for finding the characteristics of this second-order transition for a set of explosive percolation models. For each of the models, with high precision, we obtain critical exponents and amplitudes, and the critical point.


Critical Exponent Percolation Cluster Giant Component Cluster Size Distribution Continuous Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the FCT projects PTDC: FIS/71551/2006, FIS/108476/2008, SAU-NEU/103904/2008, MAT/114515/2009, and PEst-C/CTM/LA0025/2011.


  1. 1.
    Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323, 1453–1455 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Araujo, N.A.M., Andrade Jr., J.S., Ziff, R.M., Herrmann, H.J.: Tricritical point in explosive percolation. Phys. Rev. Lett. 106, 095703 (2011)CrossRefGoogle Scholar
  3. 3.
    Cho, Y.S., Kim, J.S., Park, J., Kahng, B., Kim, D.: Percolation transitions in scale-free networks under Achlioptas process. Phys. Rev. Lett. 103, 135702 (2009)CrossRefGoogle Scholar
  4. 4.
    Cho, Y.S., Kahng, B., Kim, D.: Cluster aggregation model for discontinuous percolation transition. Phys. Rev. E 81, 030103(R) (2010)Google Scholar
  5. 5.
    da Costa, R.A., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105, 255701. (2010)
  6. 6.
    Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, Oxford (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)Google Scholar
  8. 8.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  9. 9.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008)CrossRefGoogle Scholar
  10. 10.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1 and 2. Wiley, New York (1968)Google Scholar
  11. 11.
    Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A: Math. Gen. 14, 3389 (1981)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Nagler, J., Levina, A., Timme, M.: Impact of single links in competitive percolation. Nature Phys. 7, 265 (2011)CrossRefGoogle Scholar
  13. 13.
    Radicchi, F., Fortunato, S.: Explosive percolation in scale-free networks. Phys. Rev. Lett. 103, 168701 (2009)CrossRefGoogle Scholar
  14. 14.
    Riordan, O., Warnke, L.: Achlioptas process phase transitions are continuous. Science 333, 322 (2011)CrossRefGoogle Scholar
  15. 15.
    Smoluchowski, M.V.: Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und den Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys. 353, 1103 (1915)CrossRefGoogle Scholar
  16. 16.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (1994)Google Scholar
  17. 17.
    Ziff, R.M.: Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks. Phys. Rev. Lett. 103, 045701 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. A. da Costa
    • 1
  • S. N. Dorogovtsev
    • 1
    • 2
  • A. V. Goltsev
    • 1
    • 2
  • J. F. F. Mendes
    • 1
  1. 1.Department of Physics and I3NUniversity of Aveiro, Campus Universitário de SantiagoAveiroPortugal
  2. 2.A.F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations