Skip to main content

Lorenz Attractors and Generalizations: Geometric and Topological Aspects

  • Conference paper
  • First Online:
Nonlinear Maps and their Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 57))

  • 854 Accesses

Abstract

In this paper, the problem of topological distinguishing of Lorenz-like attractors and their generalizations is discussed. New cardinal-valued topological invariants for Lorenz-type attractors and generalizations are constructed. A generalization is considered of Williams’s well-known model of the attractor in the Lorenz system, the inverse limit of semiflows on branched manifolds that are suspensions over a discontinuous expanding map of a closed linear interval. The generalization consists in the consideration of maps with several discontinuity points, rather than one. A cardinal-valued topological invariant L-manuscript is constructed that distinguishes a continuum of nonhomeomorphic generalized models. A topological invariant distinguishing a continuum of nonhomeomorphic geometric Lorenz attractors is obtained as a consequence. An analogous cardinal-valued invariant is constructed for attractors of Lorenz-type maps. The kneading invariant is not a topological invariant distinguishing attractors as sets; there exists an uncountable set of mutually nonconjugating Lorenz-type maps having homeomorphic attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraimovich, V.S., Bykov, V.V., Shil’nikov, L.P.: On structurally unstable attracting limit sets of Lorenz attractor type. Trudy Moskov. Mat. Obshch. 44, 150–212 (1982); English translation in Trans. Moscow Math. Soc. 2, 153–216 (1983)

    Google Scholar 

  2. Barge, M.: Horseshoe maps and inverse limits. Pacific J. Math. 121(1), 29–39 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Klinshpont, N.E.: A topological invariant of the Lorenz attractor. Uspekhi Mat. Nauk 47(2), 195–196 (1992); English translation in Russian Math. Surveys 47(2), 221–223 (1992)

    Google Scholar 

  5. Klinshpont, N.E.: The topological invariant of the Lorenz’s type attractors. Appendix to Plykin, R.V., Zhirov, A.J.: Some problems of attractors of dynamical systems. Topol. Appl. 54(1–3), 39–46 (1993)

    Google Scholar 

  6. Klinshpont, N.E.: On the topological classification of Lorenz-type attractors. Matematicheskii Sbornik. 197(4), 75–122 (2006); English translation in Sbornik Math. 197(4), 547–593 (2006)

    Google Scholar 

  7. Lorenz, E.N.:Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Google Scholar 

  8. McLaughlin, J.B., Martin, P.C.: Transition to turbulence of statically stressed fluids. Phys. Rev. Lett. 39(20), 1189–1192 (1974)

    Article  Google Scholar 

  9. Plykin, R.V.: To a problem of topological classification of strange attractors of dynamic systems. Uspekhi Mat. Nauk. 57(6), 123–166 (2002). English translation: Russian Math. Surveys 57(6), 1163–1205 (2002)

    Google Scholar 

  10. Plykin, R.V., Zhirov, A.J.: Some problems of attractors of dynamical systems. Topol. Appl. 54(1–3), 39–46 (1993)

    MathSciNet  Google Scholar 

  11. Rand, D.: The topological classification of Lorenz attractors. Math. Proc. Camb. Phil. Soc. 83(3), 451–460 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Viana, M.: What’s new on Lorenz strange attractors? Math. Intell. 22(3), 6–19 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Watkins, W.T.: Homeomorphic classification of certain inverse limit spaces with open bonding maps. Pacific J. Math. 103(2), 589–601 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  15. Williams, R.F.: The structure of Lorenz attractors. In: Turbulence Seminar (Univ. Calif., Berkeley, CA, 1976/77). Lecture Notes in Mathematics, vol. 615, pp. 94–112. Springer, Berlin (1977)

    Google Scholar 

  16. Williams, R.F.: The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 73–99 (1979)

    Article  MATH  Google Scholar 

  17. Yorke, J.A., Yorke, E.D.: Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. J. Statist. Phys. 21(3), 263–377 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Klinshpont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Klinshpont, N. (2014). Lorenz Attractors and Generalizations: Geometric and Topological Aspects. In: Grácio, C., Fournier-Prunaret, D., Ueta, T., Nishio, Y. (eds) Nonlinear Maps and their Applications. Springer Proceedings in Mathematics & Statistics, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9161-3_12

Download citation

Publish with us

Policies and ethics