Biosonar pp 107-141 | Cite as

Sound Intensities of Biosonar Signals from Bats and Toothed Whales

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 51)

Abstract

The signals emitted by echolocating bats and toothed whales can be of very impressive intensity. Actually, some of the most intense vocalizations of any mammal is found in the echolocation calls of bats and whales. Here we collect the known literature of so-called source levels (the sound intensity measured at a reference distance in front of the animal) of echolocation signals. This information is discussed in relation to the dynamics of the sound production of echolocation signals when the animal is maneuvering around different kinds of objects. Also, by implementing different strategies on the receiver (hearing) side of the echolocation system the different strategies when approaching a target found in nature may be at least in part explained by the acoustic environment. Also, some prey species can detect the signals from the approaching predator. This makes it interesting to investigate the behavior of prey species that can detect ultrasound and how such prey can change the echolocation strategy of the pursuing predator.

Keywords

Acoustic localization Automatic gain control Echolocation Hearing sensitivity Hydrophone array Microchiroptera Odontocetes Source level Transmission loss 

Notes

Acknowledgments

We thank Lee Miller, Paul Nachtigall, Arthur Popper, and Lutz Wiegrebe for comments on previous drafts of this chapter.

References

  1. Atem, A. C., Rasmussen, M. H., Wahlberg, M. Petersen, H. C., & Miller, L. A. (2009). Changes in click source levels with distance to targets: Studies of free-ranging white-beaked dolphins (Lagenorhynchus albirostris) and captive harbour porpoises (Phocoena phocoena). Bioacoustics, 19(1), 49–65.CrossRefGoogle Scholar
  2. Au, W. W. L. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56(4), 1280–1290.PubMedCrossRefGoogle Scholar
  3. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.CrossRefGoogle Scholar
  4. Au, W. W. L., & Herzing, D. L. (2002). Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis). Journal of the Acoustical Society of America, 113(1), 598–604.CrossRefGoogle Scholar
  5. Au, W. W. L., & Benoit-Bird, K. J. (2003). Automatic gain control in the echolocation system of dolphins. Nature, 423, 861–863.PubMedCrossRefGoogle Scholar
  6. Au, W. W. L., & Wursig, B. (2004). Echolocation signals of dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand. Journal of the Acoustical Society of America, 115(5), Pt. 1, 2307–2313.Google Scholar
  7. Au, W. W. L., Floyd, R. W., & Haun, J. E. (1978). Propagation of Atlantic bottlenose dolphin echolocation signals. Journal of the Acoustical Society of America, 64(2), 411–422.CrossRefGoogle Scholar
  8. Au, W. W. L., Carder, D. A., Penner, R. H., & Scronce, B. L. (1985). Demonstration of adaptation in beluga whale echolocation signals. Journal of the Acoustical Society of America, 77(2),726–730.Google Scholar
  9. Au, W. W. L., Penner, R. H., & Turl, C. H. (1988). Propagation of beluga echolocation signals. Journal of the Acoustical Society of America, 82(3), 807–813.CrossRefGoogle Scholar
  10. Au, W. W. L., Kastelein, R. A., Rippe, T., & Schooneman, N. M. (1999). Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena). Journal of the Acoustical Society of America, 106(6), 3699–3705.PubMedCrossRefGoogle Scholar
  11. Au, W. W. L., Ford, J. K. B., Horne, J. K., & Newman Allman, K. A. (2004). Echolocation signals of free-ranging killer whales (Orcinus orca) and modelling of foraging for Chinook salmon (Oncorhynchus tshawytscha). Journal of the Acoustical Society of America, 115(2), 901–909.PubMedCrossRefGoogle Scholar
  12. Au, W. W. L., Horne, J. K., & Jones, C. (2010). Basis of acoustic discrimination of chinook salmon from other salmons by echolocating Orcinus orca. Journal of the Acoustical Society of America, 128(4), 2225–2232.PubMedCrossRefGoogle Scholar
  13. Barber, J. R., & Conner, W. E. (2007). Acoustic mimicry in a predator–prey interaction. Proceedings of the National Academy of Sciences of the USA, 104, 9331–9334.Google Scholar
  14. Barrett-Lennard, L., Ford, J. K. B., & Heise, K. A. (1996). The mixed blessing of echolocation: Differences in sonar use by fish-eating and mammal-eating killer whales. Animal Behavior, 51, 553–565.CrossRefGoogle Scholar
  15. Beedholm, K., & Møhl, B. (2006). Directionality of sperm whale sonar clicks and its relation to piston radiation theory. Journal of the Acoustical Society of America, 119(2), EL14–EL19.PubMedCrossRefGoogle Scholar
  16. Beedholm, K., & Miller, L. A. (2007). Automatic gain control in harbor porpoises (Phocoena phocoena)? Central versus peripheral mechanisms. Aquatic Mammals, 33(1), 69–75.CrossRefGoogle Scholar
  17. Beranek, L. (1996). Acoustics. Melville, NY: American Institute of Physics.Google Scholar
  18. Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2009). Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). Journal of Experimental Biology, 212, 11–20.PubMedCrossRefGoogle Scholar
  19. Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2010). Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllosotomidae). Behavioral Ecology and Sociobiology, 64, 1867–1874.CrossRefGoogle Scholar
  20. Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). Journal of the Acoustical Society of America, 129(1), 427–435.PubMedCrossRefGoogle Scholar
  21. Corcoran, A. J., Barber, J. R., & Conner, W. E. (2009). Tiger moth jams bat sonar. Science 325, 327.CrossRefGoogle Scholar
  22. Dantzker, M. S., Deane, G. B., & Bradbury, J. W. (1999). Directional acoustic radiation in the strut display of male sage grouns Centrocercus urophasianus. Journal of Experimental Biology, 202, 2893–2909.PubMedGoogle Scholar
  23. Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.PubMedCrossRefGoogle Scholar
  24. Eskesen, I. G., Wahlberg, M., Simon, M., & Larsen, O. N. (2011). Echolocation clicks from sympatric killer whales and long finned pilot whales. Journal of the Acoustical Society of America, 130(1), 9–12.Google Scholar
  25. Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  26. Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114(2), 1120–1131.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ghose, K., Moss, C. F., & Horiuchi, T. K. (2007). Flying big brown bats emit a beam with two lobes in the vertical plane. Journal of the Acoustical Society of America, 122, 3717–3724.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gillespie, D., Dunn, C., Gordon, J. Claridge, D. Embling, C., & Boyd, I. (2010). Field recordings of Gervais’ beaked whales Mesoplodon europaeus from the Bahamas. Journal of the Acoustical Society of America, 125(5), 3428–3433.CrossRefGoogle Scholar
  29. Goerlitz, H. R., der Hofstede, H. M., Zeale, M. R. K., Jones, G., & Holderied, M. W. (2010). An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20(17), 1568–1572.PubMedCrossRefGoogle Scholar
  30. Guarato, F., Hallam, J., & Matsuo, I. (2011). Reconstruction of the signal produced by a directional sound source from remote multi-microphone recordings. Journal of the Acoustical Society of America, 130(3), 1689–1699.PubMedCrossRefGoogle Scholar
  31. Hartley, D. J. (1992a). Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. Journal of the Acoustical Society of America, 91, 1120–1132.Google Scholar
  32. Hartley, D. J. (1992b). Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. Journal of the Acoustical Society of America, 91, 1133–1149.Google Scholar
  33. Henze, D., & O’Neill, W. E. (1991). The emission pattern of vocalizations and directionality of the sonar system in the echolocating bat, Pteronotus parnelli. Journal of the Acoustical Society of America, 89, 2430–2434.PubMedCrossRefGoogle Scholar
  34. Hiryu, S., Katsura, K., Lin, L.-K., Riquimaroux, H., & Watanabe, Y. (2006). Radiation pattern of echolocation pulse in Taiwanese leaf-nosed bat, Hipposideros terasensis. Acoustical Science and Technology, 27, 108–110.CrossRefGoogle Scholar
  35. Hiryu, S., Hagino, T., Riquimaroux, H., & Watanabe, Y. (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Journal of the Acoustical Society of America, 121, 1749–1757.PubMedCrossRefGoogle Scholar
  36. Holderied, M. W., & von Helversen, O. (2003). Echolocation range and wingbeat period match in aerial-hawking bats. Proceedings of the Royal Society London B: Biological Sciences, 270, 2293–2300.Google Scholar
  37. Holderied, M. W., Korine, C., Fenton, M. B., Parsons, S., Robson, S., & Jones, G. (2005). Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. Journal of Experimental Biology, 208, 1321–1327.PubMedCrossRefGoogle Scholar
  38. Jakobsen, L., & Surlykke, A. (2010). Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proceedings of the National Academy of Sciences of the USA, 107, 13930–13935.Google Scholar
  39. Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent acoustic field of view in echoloating bats. Nature, 493, 93–96.PubMedCrossRefGoogle Scholar
  40. Jensen, M. E. (2000). The effect of acoustic interference and clutter objects on search signal design in echolocating bats. Ph.D. thesis, University of Southern Denmark.Google Scholar
  41. Jensen, M. E., & Miller, L. A. (1999). Echolocation signals of the bat Eptesicus serotinus recorded using a vertical microphone array: Effect of flight altitude on searching signals. Behavioral Ecology and Sociobiology, 47, 60–69.CrossRefGoogle Scholar
  42. Jensen, F. H., Rocco, A., Mansur, R. M., Smith, B. D., Janik, V. M., Madsen, P. T. (2013). Clicking in shallow rivers: short-range echolocation of Irrawaddy and ganges river dolphins in a shallow, acoustically complex habitat. PLOS ONE, 8(4), e59284.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Johnson M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., & Tyack, P. L. (2006). Foraging Blainville’s beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation. Journal of Experimental Biology, 209, 5038–5050.PubMedCrossRefGoogle Scholar
  44. Kamminga, C., Kataoka, T., & Engelsma, F. J. (1988). Investigations on cetacean sonar VII. Underwater sounds of Neophocaena phcaenoides of the Japanese coastal population. Aquatic Mammals, 12, 52–60.Google Scholar
  45. Kastak, D., & Schusterman, R. J. (1999). In-air and underwater hearing sensitivity of a northern elephans seal (Mirounga angustirostris). Canadian Journal of Zoology, 77, 1751–1758.CrossRefGoogle Scholar
  46. Koblitz, J. C., Wahlberg, M., Stilz, P., Madsen, P., Beedholm, K., & Schnitzler, H. U. (2012). Asymmetry and dynamics of a narrow sonar beam in an echolocating harbor porpoise. Journal of the Acoustical Society of America, 131(3), 2315–2324.PubMedCrossRefGoogle Scholar
  47. Kyhn, L. A., Tougaard, J., Jensen, F., Wahlberg, M., Stone, G., Yoshinaga, A., Beedholm, K., & Madsen, P. (2009). Feeding at a high pitch: Source parameters of narrow band, high-frequency clicks from echolocating off-shore hourglass dolphins and coastal Hector’s dolphins. Journal of the Acoustical Society of America, 125(3), 1783–1791.PubMedCrossRefGoogle Scholar
  48. Kyhn, L. A., Jensen, F. H., Beedholm, K., Tougaard, J., Hansen, M., & Madsen, P. T. (2010). Echolocation in sympatric Peale’s dolphins (Lagenothynchus australis) and Commerson’s dolpins (Cephalorhynchus commersonii) producing narrow-band high-frequency clicks. Journal of Experimental Biology, 213, 1940–1949.Google Scholar
  49. Kyhn, L. A., Tougaard, J., Beedholm, K., Jensen, F. H., Ashe, E., Williams, R., & Madsen, P. T. (2013). Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoises (Phocoena phocoena) and Dall’s poproise (Phcoenoides dalli). PLoS ONE, 8(5), e63763.Google Scholar
  50. Li, S., Wang, K., Wang, D., & Akamatsu, T. (2005). Echolocation signals of the free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis). Journal of the Acoustical Society of America, 117(5), 3288–3296.PubMedCrossRefGoogle Scholar
  51. Li, S., Wang, D., Wang, K., Akamatsu, T., Ma, Z., & Han, J. (2007). Echolocation click sounds from wild inshore finless porpoise (Neophocaena phocaenoides sunameri) with comparisons to the sonar of riverine N. p. asiaeorientalis. Journal of the Acoustical Society of America, 121(6), 3938–3946.PubMedCrossRefGoogle Scholar
  52. Linnenschmidt, M., Beedholm, K., Wahlberg, M., Kristensen, J. H., & Nachtigall, P. E. (2012). Keeping returns optimal: Gain control elicited by dynamic hearing thresholds in a harbour porpoise. Proceedings of the Royal Society of London B: Biological Sciences, 279(1738), 2237–2245.CrossRefGoogle Scholar
  53. Madsen, P. T., & Wahlberg, M. (2007). Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales. Deep-Sea Research Pt. I: Oceanographic Research Papers,, 54(8), 1421–1444.CrossRefGoogle Scholar
  54. Madsen, P. T., Kerr, I., & Payne, R. (2004a). Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: False killer whales Pseudorca crassidens and Risso’s dolphins, Grampus griseus. Journal of Experimental Biology, 207, 1811–1823.PubMedCrossRefGoogle Scholar
  55. Madsen, P. T., Kerr, I., & Payne, R. (2004b). Source parameter estimates of echolocation clicks from wild pygmy killer whales (Feresa attenuata). Journal of the Acoustical Society of America, 116(4), 1909–1912.PubMedCrossRefGoogle Scholar
  56. Madsen, P. T., Carder, D. A., Beedholm, K., & Ridgway, S. H. (2005a). Porpoise clicks from a sperm whale nose: Convergent evolution of 130 kHz pulses in toothed whale sonars? Bioacoustics, 15, 195–206.CrossRefGoogle Scholar
  57. Madsen, P. T., Johnson, M., Aguilar de Soto, N., Zimmer, W. M. X., & Tyack, P. L. (2005b). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181–194.PubMedCrossRefGoogle Scholar
  58. Madsen, P. T., Wilson, M., Johnson, M., Hanlon, R. T., Bocconcelli, A., Aguilar de Soto, N., & Tyack, P. L. (2007). Clicking for calamari: toothed whales can echoloate squid Loligo pealeii. Aquatic Biology, 1, 141–150.CrossRefGoogle Scholar
  59. Mann, D. A., Lu, Z., & Popper, A. N. (1997). A clupeid fish can detect ultrasound. Nature, 389, 341.CrossRefGoogle Scholar
  60. Matsuta, N., Hiryu, S., Fojioka, E., Yamada, Y., Riquimaroux, H., & Watanabe, Y. (2013). Adaptive beamwidth control on echolocation sounds from CF-FM bats, Rhinolophus ferrumequinum nippon, during preycapture flight. Journal of Experimental Biology, 216, 1210–1218.Google Scholar
  61. Medwin, H., & Clay, C. S. (1998). Fundamentals of acoustical oceanography. New York: Academic Press.Google Scholar
  62. Miller, L.A., Pristed, J., Møhl, B., & Surlykke, A. (1995). The click-sounds of narwhals (Monodon monoceros) in Inglefield Bay, Northwest Greenland. Marine Mammal Science, 11(4), 491–502.Google Scholar
  63. Miller, L. A., & Surlykke, A. M. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. Bioscience, 51, 570–581.CrossRefGoogle Scholar
  64. Mogensen, F., & Møhl, B. (1979). Sound radiation patterns in the frequency domain of cries from a vespertilionid bat. Journal of Comparative Physiology A, 134, 165–171.CrossRefGoogle Scholar
  65. Møhl, B., Surlykke, A., & Miller, L. A. (1990). High intensity narwhal clicks. In J. Thomas & R. Kastelein (Eds.), Sensory abilities of cetaceans (pp. 295–304). New York: Plenum Press.CrossRefGoogle Scholar
  66. Møhl, B., Wahlberg, M., Madsen, P. T., Miller, L. A., & Surlykke, A. (2000). Sperm whale clicks: Directionality and source levels revisited. Journal of the Acoustical Society of America, 107 (1), 638–648.PubMedCrossRefGoogle Scholar
  67. Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., & Lund, A. (2003). The monopulsed nature of sperm whale clicks. Journal of the Acoustical Society of America, 114(2), 1143–1154.PubMedCrossRefGoogle Scholar
  68. Møhl, B., Wahlberg, M., & Heerfordt. A. (2006). Hyper-directionality in clicks from the sperm whale (Physeter macrocephalus). Journal of the Acoustical Society of America, 119(5) Pt. 2, 3333.Google Scholar
  69. Moore, P. W. B., Dankiewicz, L. A., & Houser, D. A. (2008). Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 124, 3324–3332.PubMedCrossRefGoogle Scholar
  70. Morisaka, T., Karczmarski, L., Akamatsu, T., Sakai, M., Dawson, S., & Thornton, M. (2011). Echolocation signals of Heaviside’s dolphins (Cephalorhynchus heavisidii). Journal of the Acoustical Society of America, 129(1), 449–457.PubMedCrossRefGoogle Scholar
  71. Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive vocal behavior drives perception by echolocation in bats. Current Opinion in Neurobiology, 21, 1–8.CrossRefGoogle Scholar
  72. Nachtigall, P. E., & Supin, A. Y. (2008). A false killer whale adjusts its hearing when it echolocates. Journal of Experimental Biology, 211, 1714–1718.PubMedCrossRefGoogle Scholar
  73. Nørum, U., Brinkløv, S., & Surlykke, A. (2012). New model for gain control of signal intensity to object distance in echolocating bats. Journal of Experimental Biology, 215, 3045–3054.PubMedCrossRefGoogle Scholar
  74. Plachta, D. T., & Popper, A. N. (2003). Evasive responses of American shad (Alosa sapidissima) to ultrasonic stimli. Acoustic. Research Letters Online, 5, 25–30.CrossRefGoogle Scholar
  75. Proakis, J. G., & Manolakis, D. G. (1991). Digital signal processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  76. Rasmussen, M., Miller, L. A., & Au, W. W. L. (2002). Sounds and calculated source levels from whitebeaked dolphins (Lagenorhynchus albirostris Gray 1846) recorded in Icelandic waters. Journal of the Acoustical Society of America, 111, 1122–1125.PubMedCrossRefGoogle Scholar
  77. Rasmussen, M. H., Wahlberg, M., & Miller, L. A. (2004). Estimated transmission beam pattern of clicks recorded from free-ranging white-beaked dolphins Lagenorhynchus albirostris. Journal of the Acoustical Society of America, 116, 1826–1831.PubMedCrossRefGoogle Scholar
  78. Ratcliffe, J. M., Jakobsen, L., Kalko, E. K. V., & Surlykke, A. (2011). Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. Journal of Comparative Physiology A, 197(5), 413–423.CrossRefGoogle Scholar
  79. Schnitzler, H.-U., & Grinnell, A. D. (1977). Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. I Directionality of sound emission. Journal of Comparative Physiology A, 116, 51–61.CrossRefGoogle Scholar
  80. Schotten, M., Au, W. W. L., Lammers, M. O., & Aubauer, R. (2003). Echolocation recordings and localization of wild spinner dolphins (Stenella longirostris) and pantropical spotted dolpins (Stenella attenuata) using a four-hydrophone array. In J. Thomas, C. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 393–400). Chicago: University of Chicago Press.Google Scholar
  81. Schuchmann, M., & Siemers, B. (2010). Variability in echolocation call intensity in a community of horseshoe bats: A role for resource partitioning or communication? PLoS ONE, 5(9): e1 2842. doi: 10.1371/journal.pone.0012842.
  82. Simmonds, J., & MacLennan, D. (2006). Fisheries acoustics. Oxford: Blackwell.Google Scholar
  83. Simon, M., Wahlberg, M., & Miller, L. A. (2007). Echolocation clicks from killer whales (Orcinus orca) feeding on herring (Clupea harengus) in Norwegian waters. Journal of the Acoustical Society of America, 121(2), 749–752.PubMedCrossRefGoogle Scholar
  84. Starkhammar, J., Moore, P. W., Talmadge, L. & Houser, D. S. (2011). Frequency-dependent variation in the two-dimensional beam pattern of an echolocating dolphin. Biology Letters, doi:  10.1098/rsbl.2011.0396.PubMedCentralPubMedGoogle Scholar
  85. Surlykke, A. (1988). Interaction between echolocating bats and their prey. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar (pp. 551–556). New York: Plenum Press.CrossRefGoogle Scholar
  86. Surlykke, A., & Kalko, E. K. V. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE, 3(4), e2036(1)-e2036(10).Google Scholar
  87. Surlykke, A., Miller, L. A., Møhl, B., Andersen, B. B., Christensen-Dalsgaard, J., & Jørgensen, M. B. (1993). Echolocation in two very small bats from Thailand: Craseonycteris thonglongyai and Myotis siligorensis. Behavioral Ecology and Sociobiology, 33, 1–12.CrossRefGoogle Scholar
  88. Surlykke, A., Filskov, M., Fullard, J. H., & Forrest, E. (1999). Auditory relationships to size in noctuid moths: Bigger is better. Naturwissenschaften, 86, 238–241.CrossRefGoogle Scholar
  89. Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society B: Biological Sciences, 276, 853–860.Google Scholar
  90. Tian, B. & Schnitzler, H.-U. (1997). Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Journal of the Acoustical Society of America 101, 2347–2364.PubMedCrossRefGoogle Scholar
  91. Vanderelst, D., De Mey, F., Peremans, H., Geipel, I., Kalko, E. K. V., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5, e11893 (1)–e11893 (13).Google Scholar
  92. Villadsgaard, A., Wahlberg, M., & Tougaard, J. (2007). Echolocation clicks of wild harbour porpoises, Phocoena phocoena. Journal of Experimental Biology, 210, 56–64.PubMedCrossRefGoogle Scholar
  93. Wahlberg, M., B. Møhl, & P. T. Madsen (2001). Estimating source position accuracy of a large aperture hydrophone array for bioacoustics. Journal of the Acoustical Society of America, 109 (1): 397–406.CrossRefGoogle Scholar
  94. Wahlberg, M., F. H. Jensen, N. A. Soto, K. Beedholm, L. Bejder, C. Oliveira, M. Rasmussen M. Simon, A. Villadsgaard, P. T. Madsen (2011a). Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops truncatus and T. aduncus). Journal of the Acoustical Society of America, 130 (4), 2263–2274.PubMedCrossRefGoogle Scholar
  95. Wahlberg, M., Beedholm, K., Heerfordt, A., & Møhl, B. (2011b). Characteristics of biosonar signals from the Northern bottlenose whale, Hyperoodon ampullatus. Journal of the Acoustical Society of America, 130(5), 3077–3084.PubMedCrossRefGoogle Scholar
  96. Wilson, M., Schack, H. B., Madsen, P. T., Surlykke, A., & Wahlberg, M. (2011). Directional escape behavior in allis shad (Alosa alosa) exposed to ultrasonic clicks mimicking an approaching toothed whale. Journal of Experimental Biology, 214, 22–29.PubMedCrossRefGoogle Scholar
  97. Zimmer, W. M. X., Johnson, M., Madsen, P. T., & Tyack, P. L. (2005). Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cavirostris). Journal of the Acoustical Society of America, 117(6), 3919–3927.Google Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Fjord & Bælt and Department of BiologyUniversity of Southern Denmark, Marine Biological Research CenterKertemindeDenmark
  2. 2.Department of BiologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations